Toggle navigation
Amit Rajan
Home
ABOUT
Amit Rajan
Machine Learning | Blockchain
Four Fundamental Subspaces
Linear Algebra (Gilbert Strang): Chapter 8
Posted byAmit Rajan Tuesday, March 15, 2022
FEATURED TAGS
alternate-hypothesis
applied
basis
basis-function
bayes-theorem-for-gaussian-variables
bernoulli-distribution
binomial-distribution
bishop
cdf
classification
column-space
conceptual
confidence-intervals
conjugate-prior
cross-validation
determinant
dimension
eigenvalue-decomposition
eigenvalues
eigenvectors
exercises
expectation-maximization
exponential-distribution
feed-forward-network
gaussian-distribution
gilbert-strang
graphical-models
hypothesis-testing
islr
kernel-methods
lagrange-multipliers
least-squares
linear-algebra
linear-equations
linear-model-selection
linear-models
linear-regression
logistic-regression
matrix-factorization
matrix-multiplications
matrix-space
maximum-likelihood-for-the-gaussian
maximum-margin-classifiers
mean
mixture-models
mixtures-of-gaussians
moving-beyond-linearity
multinomial-distribution
neural-networks
normal-distribution
null-hypothesis
null-space
one-tailed-test
pattern-recognition
pmf
power
probability-distributions
projection
random-variables
regularization
resampling
statistical-learning
students-t-distribution
subspace
support-vector-machines
support-vectors
think-stats
tree-based-methods
two-tailed-test
unsupervised-learning
variance
vector-space
ABOUT ME
Data Scientist, Reader