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Abstract

Data cleaning plays a pivotal role in ensuring the
accuracy and reliability of machine learning (ML)
systems. The goal of a data cleaning task is to
enhance the quality and reliability of datasets by
identifying and rectifying errors, inconsistencies,
and inaccuracies, ensuring robustness and effec-
tiveness in subsequent data analysis and machine
learning tasks. This survey meticulously exam-
ines existing data cleaning systems, with a spe-
cific focus on three crucial aspects: 1) Integrity
constraint violation detection, 2) Identifi-
cation and handling of outliers, missing val-
ues, anomalies, and adversarial examples,
and 3) Deduplication or Entity matching
techniques. Rather than providing a superfi-
cial overview of numerous methods, the survey
delves into representative approaches, offer-
ing in-depth insights into their functionali-
ties and results. By thoroughly discussing these
methods, the survey aims to provide a compre-
hensive understanding of the landscape of data
cleaning techniques tailored for ML systems, aid-
ing researchers and practitioners in selecting and
implementing appropriate solutions for their spe-
cific use cases.

1 Introduction

There are two dimensions of data quality: in-
tension (the structure or schema of the data),
and extension (data values). A dataset should
exhibit completeness, consistency, and accu-
racy across both dimensions. Completeness
quantifies how well the data defines a real-world
object. Semantic rules are constraints that spec-
ify the meaning or semantics of the data and en-
sures that a dataset is complete. These rules de-
fine the allowable values, relationships, and con-
straints within a dataset based on the intended
interpretation of the data. Consistency encodes
the extent of the violation of semantic rules. Data
consistency can be reinforced through the imple-
mentation of intra-relation and inter-relation con-
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straints, which pertain to individual and multiple
attributes of a dataset. Accuracy measures the
correctness of the data. Accuracy can be further
categorized into semantic and syntactic accu-
racy. Syntactic accuracy refers to how closely
the values in a column align with their real-world
representations, while semantic accuracy per-
tains to the correctness of the value in relation to
the represented data point. [36]

Data cleaning is essential for maintaining data
quality. Data cleaning has two key steps: error
detection and error repair. The process of error
detection has three key stages: “What to De-
tect”, “How to Detect”, and “Where to De-
tect”. “What to Detect” stage of error detection
constitutes of different ways to detect errors, such
as integrity constraints, functional dependencies,
denial constraints, conditional functional depen-
dencies, domain value violations etc. “How to De-
tect” stage decides whether these methods should
be applied automatically or with human interven-
tion. The decision of whether to apply the meth-
ods directly to the raw data or after pre-processing
determines “Where to Detect” stage. Once er-
rors are flagged, the next step is error repair. Er-
ror repair involves: “What to Repair”, “How
to Repair”, and “Where to Repair”. These
stages determine repair priorities, the level of au-
tomation, and whether changes should be made
directly to the original dataset or not. [5]

Data errors can be qualitative or quantita-
tive in nature. A qualitative data error refers
to the error in the nature or quality of the data
itself rather than the present numerical discrepan-
cies. It includes issues like inconsistencies, inac-
curacies, or invalidities in the attributes or values
of the dataset, such as missing values, integrity
constraint violations, anomalies, and adversarial
examples. These errors affect the overall reliabil-
ity, correctness, and interpretability of the data,
often requiring manual inspection or complex al-
gorithms for detection and correction. Quantita-
tive data error pertains to numerical discrepan-
cies or anomalies within the dataset. Unlike qual-
itative errors that affect the quality or nature of
the data, quantitative errors involve issues such as
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outliers, incorrect numerical values, or statistical
irregularities. These errors can distort the analysis
and interpretation of the data, impacting the ac-
curacy and reliability of the results. Detecting and
addressing quantitative errors often involves sta-
tistical methods or algorithms designed to identify
and correct numerical inconsistencies.
With the rise of modern machine learning

techniques, particularly Deep Neural Networks
(DNNs), using a noise-aware loss function can
assist trained models in approaching optimal per-
formance even in the presence of noisy data. How-
ever, in real-world machine learning deployments,
it is common to supplement training techniques
with error detection and correction methods to
ensure robustness. Ilyas et al., 2022 investigated
the issue of mean estimation in the presence of
noisy data, where adversaries may introduce er-
rors to hinder accurate estimation by arbitrar-
ily corrupting the data. It was observed that by
considering data dependencies and implementing
data repairs, more accurate mean estimation was
achieved, reaching information-theoretically opti-
mal results. This shows that a two-step meta-
algorithm, involving data repairs followed by
robust learning, outperforms using robust
learning alone.[17] Hence, error detection and
correction play a pivotal role in ensuring the re-
liability and effectiveness of a machine learning
pipeline. The presence of data errors can signif-
icantly impact the performance and accuracy of
ML models and therefore, integrating robust er-
ror detection and correction mechanisms into the
machine learning pipeline is essential to identify
and rectify data anomalies before they propagate
through the system.

2 Preliminaries

A usual data cleaning system has various aspects,
including the type of data errors it can han-
dle, what objective should data cleaning aim to
achieve, with its importance and other critical con-
siderations. Beginning with an exploration of var-
ious data errors and their definitions, the section
delineates a formal definition of data cleaning with
its importance and various nuances that must be
considered when undertaking a data cleaning task.

2.1 Data Errors

In addition to being categorized as qualitative
and quantitative based on their characteristics,
data errors can also be classified as: schema-level
errors and instance-level errors. Schema-
level errors in a dataset encompass inconsis-

tencies and inaccuracies within the structure or
schema of the data. These errors can manifest
in several ways, including missing attributes or
columns, incorrect data types, inconsistent at-
tribute names, inconsistencies in defining relation-
ships between tables, and violations of integrity
constraints. Instance-level errors are the errors
in actual data and, usually, are the hardest to flag.
Instance-level errors can be further categorized
as single-source and multi-source. Single-
source instance-level errors occur within a sin-
gle dataset or data source. These errors may in-
clude missing values, incorrect data entries, du-
plicates, outliers, and inconsistencies within the
same dataset. On the other hand, multi-source
instance-level errors involve discrepancies or in-
consistencies across multiple data sources. These
errors can arise due to data integration or merg-
ing processes, where data from different sources
are combined. Multi-source instance-level errors
may include conflicting information, inconsisten-
cies in attribute values across datasets, and data
duplication resulting from merging records from
different sources. Multi-source instance-level er-
rors are usually much harder to resolve. [30]

The initial stage of a data cleaning system
involves establishing a framework to identify
data errors. The data cleaning system usually
utilizes various methods tailored to the specific
characteristics of the errors for the purpose. Data
errors primarily include integrity constraint
violations, missing values, outliers, anoma-
lies, adversarial examples, and duplicates.

A. Integrity Constraint Violations: In-
tegrity constraints serve as a key tool for identify-
ing qualitative data errors in the dataset. Given
a database D with relations R1, R2, ..., RK , re-
lation Ri having a set of attributes attr(Ri) =
{A1, A2, ..., AN}, integrity constraint in the form
of functional dependency over Ri is defined as:

ΦFD : (Ri : X → Y ) = ∀t1, t2 ∈ Ri,

(t1[X] = t2[X]) =⇒ (t1[Y ] = t2[Y ])
(1)

where t1, t2 are tuples in Ri, X ⊆ attr(Ri), Y ⊆
attr(Ri) are set of attributes in Ri, and t1[X] de-
notes the values for the set of attributes X for
tuple t1. Equation 1 implies that if two tuples in
relation Ri have the same values for attributes X,
then they must have the same values for attributes
Y .
Functional dependency constrained by a condi-

tion C is called as conditional function depen-
dency and is denoted as:

ΦCFD : (Ri : X → Y,C) (2)
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Equation 2 specifies that for a given set of at-
tributes X, the values for the set of attributes Y
are uniquely determined, but only when the con-
dition C holds true.
Another form of integrity constraint is denial

constraint. Denial constraints are defined as:

ΦDC : ¬(P1 ∧ P2 ∧ ... ∧ PM ) (3)

where Pm is a predicate of the form (ti[An] ◦
tj [Am]) or (ti[An] ◦ α) with tuples ti, tj ∈ D,
An, Am being the attributes, α being a constant,
and ◦ is the comparison operator. [32]

Inclusion dependencies (INDs) ensure that
the values in one set of attributes are a subset of
the values in the other set. This means that for
two attributes A and B, if dom(A) ⊆ dom(B), the
values of attribute A should be a subset of values
of attribute B, and it is said that attribute A is
dependent on attribute B.

Domain value violations are the type of in-
tegrity constraint which is used to flag the values
of an attribute that is outside its domain. The
value of a given tuple t for the attribute Ai ex-
hibits domain value violation if t[Ai] /∈ dom(Ai),
where dom(Ai) is the domain of Ai. The usual
approach to detect domain value violations is by
writing custom error detectors.

Functional dependencies, conditional functional
dependencies, denial constraints, inclusion de-
pendencies and domain value violations are tools
that address qualitative data errors and aid in
their identification.

B. Missing Values, Outliers, Anomalies,
and Adversarial Examples: Missing value is
a qualitative data error which refer to the absence
of information for certain attributes in some of
the data records. Missing values can be classified
as: missing completely at random (MCAR),
missing at random (MAR), and not missing
at random (MNAR). Given dataset D, a tu-
ple t ∈ D, and ϕ denoting the missing value; for
MCAR, the probability that a cell value is missing
does not depend on any of the attribute values in
the tuple, i.e. Pr(t[Aj ] = ϕ | t[Ai] = vi,∀i;D) =
pj . In MAR, the probability that t[Aj ] is missing
depends on the other observed cells (or attribute
values) in t, i.e. Pr(t[Aj ] = ϕ | t[Ai] = vi,∀i;D) =
Pr(t[Aj ] = ϕ | t[Ai],∀i ̸= j). The missing values
that do not follow MCAR and MAR are MNAR
(the probability of missing value may depend on
the value missed itself). [43]
Anomalies and outliers are data points that

deviate significantly from the rest of the dataset or
exhibit unusual behavior compared to the major-
ity of the data. Anomalies usually arise due to er-
rors in data collection, measurement inaccuracies,

or rare events that are not representative of the
typical behavior of the data. On the other hand,
outliers can occur naturally in data and often fall
outside a certain range or threshold of values for
a given attribute.

Adversarial examples are data points that
are intentionally crafted to cause the machine
learning model to make a mistake. They are
usually very similar to the legitimate inputs.
Missing values, outliers, anomalies and adver-
sarial examples can have a significant impact on
statistical analyses and machine learning models
if not properly handled.

C. Duplicates: Duplicates refer to records
that represent the same real-world entity. Given
two relations R1, R2, duplicates are identified as
the records a ∈ R1 and b ∈ R2 which are similar
to each other. The notion of similarity is usu-
ally defined using a similarity function sim(a, b)
that compares the record pair (a, b) and gives a
similarity score between them. Records a and b
are termed as a possible duplicate, if the similarity
score is greater than a threshold:

ΦDup : ((sim(a, b) > τ) =⇒
pair (a, b) is a possible duplicate) (4)

2.2 Formal Definition of Data
Cleaning

Given a database D with relations R1, R2, ..., RK ,
the goal of the data cleaning task is to find a
cleaned database Dclean which is as close to
the ground truth database DG (usually un-
known) as possible. A data cleaning system relies
on a cleaning operation C(.), which takes the
dirty record r as the input and either modifies it
to give the clean record r

′
= C(r) or deletes it

(ϕ = C(r)). Each cleaning operation performs a
database edit, which serves as the proxy for close-
ness to the ground truth database. As the ground
truth databaseDG is unknown, the system usually
tries to minimize the number of database edits (or
total cost of database edits) such that the resultant
cleaned database Dclean satisfies all the given con-
straints (or any other defined criteria). Each edit
v → v

′
(changing value v to v

′
) has an associated

cost cost(v, v
′
) with it, which is usually encoded

by a distance function dis(v, v
′
). The goal of a

data cleaning system is to identify the minimal
cost repair (edits) from the possible set of valid
edits (edits which lead to a database that satisfies
the given constraints), and is formally defined as:

Dclean = argmin
edit∈set of edits

( ∑
e∈edit

coste(v, v
′
)

)
(5)
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where e ∈ edit is one of the edit in the edit set,
and coste(v, v

′
) is the cost incurred for the edit e.

This formalization treats all repairs of a database
as equally probable and deterministic and do
not offer insights into the likelihood of specific
repairs. [21] [3] [8] [34]
An alternative approach views data repairing as

a statistical learning and inference problem,
aiming to identify the most probable repair rather
than focusing solely on the concept of minimal-
ity. In the probabilistic model of data cleaning, an
unclean database D can be viewed as a result of
a distortion of the cleaned database Dclean due to
some noisy model. To clean D, its cleaned version
Dclean needs to be picked for which Pr(Dclean|D)
is maximum:

argmaxDclean
Pr(Dclean|D) = argmaxDclean

Pr(D|Dclean)Pr(Dclean) (6)

where Pr(Dclean) represents the prior model of
clean database and Pr(D|Dclean) characterizes
the noisy model. [34]

2.3 Importance of Data Cleaning

Data cleaning plays a crucial role in ensuring the
effectiveness and accuracy of machine learning sys-
tems. Clean data is essential for training mod-
els that can generalize well and make reliable pre-
dictions. Without proper data cleaning, machine
learning algorithms may be susceptible to biases,
errors, and inaccuracies, leading to sub-optimal
performance and unreliable results. With the rise
of modern ML systems, the blurring of abstrac-
tion boundaries (includes weakening of the sep-
aration between different components or layers of
data sources within a ML system) can result in sig-
nificant technical debt and subsequently higher
maintenance costs. Given their inherent complex
nature, ML systems often struggle to conform to
a specific abstraction concept. An example of this
erosion of abstraction boundaries is seen in
data dependency, where ML systems relying on
complex data storage systems require consistent
and clean input data. The input signal serves as
a critical component for any ML system, and even
slight alterations to it can profoundly affect the
system’s behavior. [37]
The dataset’s quality significantly influences the

choice of model in any machine learning system.
While conventional ML systems typically priori-
tize data cleaning for training datasets, the sig-
nificance of cleaning test datasets cannot be over-
stated. Northcutt et al., 2021 investigates how
label errors in test sets can impact ML bench-
mark stability. The study evaluated the preva-
lence of labeling errors in commonly used 10 ML

benchmark datasets for assessment purposes and
examined the practical consequences of these er-
rors, with a particular focus on their impact on
model selection. The label errors were algorith-
mically identified (using confident learning frame-
work [28]) and were validated using human review-
ers. For the large datasets, a random sample was
reviewed, while for the others, all identified errors
were checked. Reviewers were presented with hy-
pothesized errors and asked whether they observed
the given label, the top algorithmically predicted
label, both labels, or neither label in the exam-
ple. Errors were further categorized as: correctable
(majority agreed on the algorithmically predicted
label), multi-label (majority agreed on both la-
bels), neither (majority agreed on neither label),
and non-agreement (if there was no majority). To
quantify the effect of correcting label errors in test
set, two accuracies are calculated: original accu-
racy and corrected accuracy. Original accu-
racy refers to the accuracy of a model’s predicted
labels computed with respect to the original labels
in the dataset. Corrected accuracy measures the
accuracy of a model’s predicted labels over a mod-
ified dataset where previously identified erroneous
labels have been corrected (when possible) or re-
moved. The experiments show that their exist an
estimated least lower-bound of 3.3% errors on av-
erage across the 10 selected datasets. Upon closer
examination of the models’ performance on the
corrected dataset, the results show that the mod-
els that excel on the original (incorrect) la-
bels perform poorly on the corrected labels.
In most of the cases, lower capacity models fared
well on the basis of corrected accuracy compared
to their more powerful counterparts. Hence, it is
recommended that despite training an ML system
on a lower-quality training set with noisy data, ef-
forts should be made to invest time and resources
in rectifying label errors in the test set. [29]

2.4 Considerations in Data Clean-
ing

Although data cleaning might appear straightfor-
ward at first glance, it involves numerous complex-
ities and challenges. Beyond detecting and cor-
recting obvious errors like missing values or du-
plicates, data cleaning often involves navigating
complex data structures, identifying subtle incon-
sistencies, and handling noisy or erroneous data
points. Moreover, the effectiveness of data clean-
ing techniques can vary significantly depending on
the specific characteristics of the dataset, such as
its size, complexity, and domain-specific nuances.
Additionally, data cleaning is an iterative process
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that may require multiple rounds of refinement
and human validations to achieve satisfactory re-
sults.

Identifying and rectifying missing values,
seemingly one of the most straightforward data
cleaning tasks, can present numerous complexi-
ties. When only a small portion of samples con-
tain missing data and these misses are random
(MCAR), excluding such samples may not distort
subsequent analysis or introduce sampling error.
However, missing values categorized as MAR or
MNAR may suggest an inherent pattern, such as
the absence of a specific attribute for all sam-
ples within a particular class, necessitating tai-
lored cleaning approaches. [43]

In addition to this apparent and straightforward
observation, there are numerous concealed intrica-
cies that must be taken into account when con-
structing any data cleaning system. Freire et
al., 2016 used NYC taxi data to demonstrate
the challenges and considerations while cleaning a
spatial-temporal urban data. Urban data usu-
ally has limited metadata, is often derived from in-
complete schema information, lacks integrity con-
straints, and requires inference of the information
provided, complicating the entire data cleaning
task. The data can be aggregated at different spa-
tial and temporal levels or resolutions (e.g., neigh-
borhoods, zip codes, hourly, daily) with the iden-
tification of dirty data depending on the chosen
resolution. Data labeled as dirty in a specific
time or place may represent a pattern at dif-
ferent resolution. For example, significant drops
in trips on Christmas and New Year’s day are re-
curring yearly patterns, not a dirty data. Apart
from this, in urban data, the outlier and anoma-
lies are not always dirty data. For example,
in NYC taxi data , there is a significant absence of
taxis on 6th avenue between Midtown and Down-
town, which can be easily explained as: during this
time frame, 6th avenue was closed for the annual
NYC 5 Boro Bike Tour. Another example is the
trip drops in August 2011, which can be linked to
weather events like heavy rainfall and Hurricane
Irene (after analyzing precipitation and wind data
for that year). This suggests that these anoma-
lies may not necessarily indicate erroneous data
but instead reveal intriguing phenomena warrant-
ing further investigation. Hence, a data cleaning
system, designed for urban data cleaning, should
enable users to explore data across differ-
ent aggregation levels, guiding them to in-
triguing data subsets automatically. Despite
this guidance, domain experts may still need to
scrutinize various spatio-temporal segments to de-
tect patterns, irregularities, and potential errors.

Moreover, users must discern whether these events
signify data quality concerns or significant fea-
tures, which may necessitate identification and in-
tegration of additional external datasets into the
urban data context. [10]

In summary, while data cleaning may seem
straightforward, it’s fraught with complexities and
challenges beyond the obvious errors like missing
values or duplicates. It involves navigating in-
tricate data structures, identifying subtle incon-
sistencies, and handling noisy or erroneous data
points. Being an iterative process often requiring
multiple rounds of refinement and human valida-
tion, the effectiveness of data cleaning techniques
varies depending on factors like dataset size, com-
plexity, and domain-specific nuances.

2.5 Components of a Data Cleaning
System

A data cleaning system is an essential element
within any machine learning framework. Such
a system can either function solely as an Error
Detection System or as an Integrated Error
Detection and Cleaning System. Based on
the type of errors they handle, any data cleaning
system can be classified as: Detection/Cleaning
of Integrity constraint violation; Outliers,
missing values, anomalies and adversarial
examples; and Duplicates (Entity Matching
Systems).

In the subsequent sections, existing represen-
tative data cleaning systems are outlined, pro-
viding detailed insights into their functionalities
and outcomes. Section 3 lists error detection and
cleaning systems that deal with integrity con-
straint violation. Section 4 provides a thorough
overview of systems addressing missing values,
outliers, anomalies, and adversarial exam-
ples. Section 5 discusses representative entity
matching (de-duplication) systems. Section 6
wraps up the discussion by highlighting the sig-
nificance of well-informed decision-making and se-
lection framework for identifying an appropriate
data cleaning methodology tailored to the specific
use-case.

3 Integrity Constraint Viola-
tion

Data cleaning systems dealing with integrity
constraint violation are designed to identify and
rectify inconsistencies in datasets that violate pre-
defined integrity constraints. These constraints
define the acceptable rules and relationships that
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data must adhere to. Data cleaning systems tar-
geting integrity constraint violations typically em-
ploy techniques such as constraint-based inference
and repair algorithms to detect and resolve incon-
sistencies.

Schelter et al., 2018 introduced an auto-
mated data validation framework designed for
large-scale data sets. The proposed system of-
fers declarative APIs equipped with both stan-
dard quality constraints and custom validations,
allowing users to focus on specifying quality checks
rather than implementation details. Users can
define quality constraints using internal or ex-
ternal libraries, or create custom functions as
needed. These constraints are then translated
into data quality metrics, which can be accu-
rately computed or approximated depending on
complexity. To handle the growing data volume
efficiently, the system is state-aware, facilitating
incremental computation of reformulated data
quality metrics. Additionally, the framework in-
cludes a machine learning model for predicting and
verifying column values’ correctness. It also pro-
vides automated constraint suggestions based on
heuristic single-column profiling and a straightfor-
ward anomaly detection algorithm leveraging his-
torical data quality metrics. Implemented atop
Apache Spark, the system utilizes AWS for data
storage. [36]

Continuous Data Cleaning uses data, con-
straints and past repairs as the evidence to suggest
most probable and accurate repairs in the future.
It is a dynamic data cleaning framework which
does continuous and adaptive data cleaning by
performing data as well as constraint evolu-
tion. The proposed system sees the data clean-
ing problem as a classification task whose goal
is to identify the most probable repairs given a
dataset and integrity constraints. The classifier
predicts the probable repairs (and their probabil-
ity) with the help of a set of statistics computed
over the dataset and the constraints. The pre-
dicted probable repairs are fed to repair algorithm
that selects the best possible repairs based on a
cost model. The selected repairs are presented
to the end-user which then chooses which repair
should be used for the resolution. The applied
repairs are used to re-train the classifier. The
system fixes the violated integrity constraints by:
Data Repair, Constraint Repair or Hybrid
Repair. Data repairs are further classified as:
Right Data Repair and Left Data Repair.
In right data repair, the constraint violations are
fixed by changing the right hand side attribute
values. Left data repair changes the left hand
side attribute set (X) values for the violated con-

straints instead (refer Equation 1,2). Constraint
repair is implemented by adding more attributes
in the left hand side attribute set X. If both
the data and constraint repairs are used to re-
pair a violated constraint, the process is termed
as hybrid repair. The system maintains a set of
statistics, called as repair statistics, over dataset
and constraints which are then used by the clas-
sifier to suggest the repairs. These repair statis-
tics should be easy to maintain and compute and
should capture the incremental changes needed to
identify the constraint violations. A logistic re-
gression based multi-class classifier with a total
of 7 classes: Not Repaired, Completely Repaired
by Data/Constraint/Hybrid Repairs, Partially Re-
paired by Data/Constraint/Hybrid Repairs with
repair statistics and the past repairs as the fea-
tures, is used for the classification task. Weighted
cross-entropy function with weight as the fraction
of patterns in the class is used as the objective
function and is given as:

L = − 1
|P|

∑
p∈P

1
|Cc|

∑
c P (p = c) lnQ(p = c) (7)

where P is the set of patterns violating the con-
straints, Q is the standard softmax function, Cc is
the set of pattern assigned to class c, and p = c
means that the pattern p is assigned to class c. To
test the performance of the system on real world
dirty datasets a baseline classifier CL-A is trained
on the initial sets of baseline repairs and repair
statistics. CL-A predicted repairs are manually
evaluated to form a user validated repair set B
which is then used with repair statistics to train
the classifier CL-B. The classifier CL-B outper-
forms CL-A in terms of accuracy and provides an
average per class classification gain of 11
points. [42]

Cong et al., 2007 proposed a data clean-
ing system that guarantees that the suggested re-
pairs satisfy the given integrity constraints and
are accurate above a predefined rate. They
suggested a way to represent condition C in a
conditional functional dependency represented by
Equation 2 as a table Tp. The updated CFD is
given as:

ΦCFD : (Ri : X → Y, Tp) (8)

Tp follows a tabular pattern where for each at-
tribute A in X,Y there will be one column each
with values being either “-” or some constant from
domain of A (dom(A)). A typical CFD with sam-
ple data is shown in Fig 1. Row 2 of CFD ϕ2
means that for the zipcode 10012, the city should
be NY C and state should be NY . “-” means
that the attribute A can take any value in the
dom(A). CFDs can be transformed into normal
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form as (R : X → A, tp) where the right hand
side of FD has a single attribute A and tp is a
single pattern tuple (single row in the table Tp).
CFD violations can be identified for a single tuple

Figure 1: CFDs (Condition encoded as a Table)
[8]

t or a pair of tuples (t, t
′
). A single tuple t vi-

olates CFD ϕ = (R : X → A, tp) if t[X] = tp[X]

and t[A] ̸= tp[A]. A pair of tuple (t, t
′
) violates

CFD ϕ = (R : X → A, tp) if t[X] = t
′
[X] = tp[X]

and t[A] ̸= t
′
[A], given the tuple t satisfies the

CFD, i.e. t[A] = tp[A]. To fix the CFD violations,
the framework relies on attribute value mod-
ifications. The value for attribute A can either
be changed to some value from dom(A) or to null
(in the case of uncertainty in the repair). These
modifications can either be done to RHS or LHS
attributes of CFD ϕ. To delete a tuple, null value
is set to all of its attributes. To select the optimal
repair, the framework relies on weights for each
attribute value of a tuple, denoted as w(t, A) and
the distance between two values in the same do-
main, denoted as dis(v, v

′
). The cost of the repair

t, A : v → v
′
(changing the value of attribute A

from v to v
′
) is given as:

cost(v, v
′
) = w(t, A) · dis(v,v

′
)

max(|v|,|v′ |) (9)

The total cost of modifying tuple t to t
′
in

which a total of R attributes is changed is the
sum of cost(t[A], t

′
[A])∀A ∈ R. The weight infor-

mation and the distance metrics should be pro-
vided to the framework. The objective of the
system is to find the minimal cost repair for a
CFD violation. This problem is NP-complete.
The heuristic algorithm to find the best repair
for a given CFD violation is based on the con-
cept of equivalence classes [3]. The key idea
behind equivalence class is that all the tuples in
the same equivalence class will have the same
value for the associated attributes. An equiva-
lence class E is a list of tuple attribute pair (t, A)
whose target value is denoted as targ(E). Hence,
∀(t, A) ∈ E; t[A] = targ(E). targ(E) can either
be a value in dom(A) or null or “-” (meaning
targ(E) is not yet fixed). Equivalence class can
be used to repair the violated constraints. For
example, for the tuple pair t, t

′
violating a CFD

(i.e. t[X] = t
′
[X] = tp[X] and t[A] ̸= t

′
[A]), the

ideal repair is to move (t, A), (t
′
, A) to the same

equivalence class E whose target value targ(E)
can be decided later. This decouples the two main
tasks of deciding which attribute values should be
equal and what the value should be. The assign-
ment of value to a particular equivalence
class can be delayed to mitigate poor deci-
sions at early stage. The system picks the next
best (CFD,tuple) pair that takes the least cost to
repair by looping over the all possible (CFD,tuple)
pairs. The system also supports incremental
data repair. To find the accuracy of the cleaned
database, a part of cleaned tuples is sampled and
sent for manual review. If the calculated accu-
racy is not in the desired range, the user may edit
the CFDs and the cleaning process will restart.
The experimental results show that the suggested
cleaning framework improves data quality in mul-
tiple settings, scaling well with database size. Re-
pair quality may decrease with increasing
error in database and sometimes the sys-
tem may introduce additional errors during
the cleaning process. [8]

Bohannon et al., 2005 proposed a cost-
based data cleaning system that uses the con-
cept of equivalence class to deal with func-
tional dependencies (FD) and inclusion de-
pendencies (INDs). Given a tuple t ∈ Ri, where
Ri is a relation in a database D, and its value
for attribute A being denoted as D(t, A), a repair
changes the value of D(t, A) from v to v

′
leading

to a clean version D
′
of database D. The cost

of this repair is encoded using a cost function
w(t) · dist(D(t, A), D

′
(t, A)), where w(t) ≥ 0 is

the weight associated with tuple t. Given a fixed
cost to insert any tuple in relation Ri, the repair
cost of any tuple t is given as:

cost(t) =


inscost(Ri) if t ∈ new(Ri)

w(t) ·
∑

A∈attr(Ri)

dis(D(t, A), D
′
(t, A)) otherwise

(10)
The total cost of repair then becomes
cost(D

′
) =

∑
t∈D′ cost(t). The data cleaning

problem is to find a minimal cost repair D
′
. FD

violation is fixed by changing the right hand at-
tribute. Given an IND I : R1[A] ⊆ R2[B] and a vi-
olating tuple t1 ∈ R1 , IND violation is repaired
by changing D(t1, A) to any value in dom(B) or
D(t2, B) for some t2 ∈ R2 to D(t1, A). The prob-
lem of finding the optimal repair is NP-complete
and a heuristic approach is used. The algorithm
to find the optimal repair is based on the concept
of equivalence class. Given a target value v, the
cost associated with the equivalence class eq
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is given as:

cots(eq, v) =
∑

(t,A)∈eq

w(t) · dis(v,D(t, A)) (11)

The target of the data cleaning task is to mini-
mize cost(eq, v) given a set of possible values for v.
For some of the repairs, the equivalence classes
may need to be merged. The cost associated
with the merger can be formulated as the differ-
ence between the cost of the merged equiva-
lence class and the sum of costs associated with
individual classes. The proposed repair algorithm
puts each tuple attribute pair in their re-
spective equivalence class and then greed-
ily merges the equivalence classes until all
constraints are satisfied. The experimental re-
sults show that the framework performs well on
real-world data cleaning problems. The run-time
of the algorithm is O(n2) which can be reduced
to O(n(lnn)2) if sub-optimal repairs with re-
spect to cost are allowed. The optimization al-
lowing the sub-optimal repairs to reduce the run-
time doesn’t affect the quality of repairs by much.
[3]
Llunatic is a chase-based data cleaning

framework to find minimal cost repair to dirty
databases. It formulates integrity constraints us-
ing equality generating dependencies (egds).
Egds takes the form:

e1 : R(AAA,BBB,C,D,E), R(AAA,BBB,C
′
, D

′
, E

′
)→ C = C

′

e2 : R1(AAA,BBB,C,D,E), R2(AAA,BBB,C
′
)→ C = C

′ (12)

where e1 means that in a relation R, if values of
attributes A and B match, the value of attribute C
should be the same. e2 extends this constraint to
two distinct relations R1 and R2. Given a source
database S (having ground truth information), a
target database T , and a set of constraints de-
fined in the form of egds Σ, Llunatic performs
the data cleaning task by focusing on cell groups.
A cell group g, is defined by its justifications
just(g), occurrence occ(g), and the value v. A
cell group is repaired by changing all the cells
in occ(g) in T to the value v which is justified
by just(g) from S. A valid repair is a set of
cell groups {g0, g1, ..., gk} where each cell in T oc-
curs in at most one cell group (to avoid conflicts).
Each of the cells will either be modified by
the repair encoded in the cell group or will
be unchanged. The repair algorithm depends on
a user-defined partial order for each of the at-
tributes. The partial order of the attribute Ai,
denoted as PAi is the preferential order in which
the value for any cell for the attribute Ai should
be picked during the repair process. For exam-
ple, if in a relation we have two attributes salary

and date, the partial order of salary can be de-
fined by values in date column as salary for latest
date will be preferred. The concept of partial
ordered is extended to cell group by using the
notion of containment. Given two cell groups g
and g

′
; if occ(g) ⊆ occ(g′

), just(g) ⊆ just(g′
), and

val(g
′
) has higher preference (based on partial or-

dering) compared to val(g); then cell group g
′
is

said to have higher partial order compared
to g. Otherwise, cell groups are termed as in-
comparable. The concept of partial ordering
is further extended to repairs. For two re-
pairs Rep and Rep

′
, if ∀g ∈ Rep;∃g′ ∈ Rep′

such
that g

′
is higher in partial ordering compared to g,

and the repair Rep
′
is preferred (it is said that re-

pair Rep
′
upgrades Rep). Given < S, T,Σ,Π >,

where Π is the partial order, a repair Rep up-
grades T if Rep satisfies Σ with respect to Π.
The minimal repair Rep is the repair such that
there doesn’t exist any other repair which is higher
in the order with respect to the partial order Π.
The partial ordering of two repairs can be checked
in O(n + km log(m)) time, where n is the total
number of cells in T , k is the maximum number
of cell groups, and m is the maximum size of a cell
group. To repair any egd, the algorithm depends
on the notion of equivalence class. Whether to
proceed with a repair or not, is decided by the cost
manager that tells whether a proposed repair is
well within the expected distance. The experimen-
tal results demonstrate that Llunatic produces
repairs of significantly higher quality on real-
world datasets with decent scalability. [11]

BoostClean is a data cleaning system that se-
lects on ensemble of error detection and re-
pair combination using statistical boosting
for domain value violations. It takes training
data (Xtrain, Ytrain), and test data (Xtest, Ytest)
as the input where Xtrain, Ytrain, and Xtest may
have errors, but Ytest should be clean to get
an unbiased measure of accuracy . A record
is represented as ri = (xi, yi) ∈ (Xtrain, Ytrain)
and ri.y denotes the label of the record. A classi-
fier C gives the correct prediction for the record
ri if C((xi, null)).y = yi. The overall accuracy of
the classifier is given as:

acc(C) = |{∀x,y∈(Xtest,Ytest):C((x,null)).y=y}|
|Ytest| (13)

A black-box function train(.) uses training data
(Xtrain, Ytrain) and returns the classifier C. User-
provided sets of detector generators D =
{d1, d2, ...} and repairs F = {f1, f2, ...} are used
by BoostClean to identify candidate dirty
records and select appropriate repair for them.
Detector generators use predicates (a boolean
expression over any record) to identify candidate
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dirty records. While error detection, predicates
return the set of referenced attributes (if eval-
uated to true) or an empty set (Φ), if no error
in referenced attributes is detected. Repair
functions do either data repairs or prediction
repairs. Data repairs change (or even delete)
the attribute values in training data for the can-
didate dirty records before the training process.
Prediction repairs take the classifier predic-
tion and replace it with some default value. The
generated repairs are denoted as a sequence of data
and prediction repairs L = (l1, l2, ..., ln) where
L ∈ D × F . L is further divided into sequence
of data repairs Ld that are applied before
ML training and prediction repairs Lp that
are used to construct the final model CL by
combining them with classifier C. The problem
of selection of optimal repair sequence L∗ is
formulated as:

L∗ = argmax
L∈D×F

acc(CL) (14)

that generates a classifier CL∗ which maximizes
prediction accuracy on (Xtest, Ytest). Boost-
Clean uses an adaptive boosting algorithm
having equal initial weights for all the data points,
with increase in the weights of incorrectly clas-
sified points in further rounds. BoostClean has
a pre-populated library of detector genera-
tors and repair functions. It further optimizes
the optimal repair sequence selection using hash-
ing and parallelization. [20]
HoloClean is a data cleaning framework that

combines integrity constraint, external data
source based data repair and statistical data
repair together. It treats input data as a noisy
version of clean data and treats each repair sig-
nal suggested by the repair algorithms as evi-
dence. It then uses probability theory to com-
bine these evidences together to come up with
the final repair step. Given a dirty dataset D with
attributes A = {A1, A2, ..., AN}, with the nth cell
of a tuple t ∈ D being denoted as t[An], where
An ∈ A. The unknown true value of a cell
is v∗c with vc being the initial observed value.
A cell is erroneous if v∗c ̸= vc. The estimated
true value for a cell is v̂c and a repair is correct
if v̂c = v∗c . HoloClean takes the dirty dataset
D and a set of integrity constraints Σ (having
denial constraints and matching dependen-
cies) as input, and returns cleaned version of D as
output. HoloClean has three main steps: Error
detection, compilation, and data repairing.
Error detection is treated as a black-box step
which divides D into Dc (clean cells) and Dn

(noisy cells). The compilation step takes the
initial cell values Ω and integrity constraints

Σ as input, and identifies each cell value c ∈ D
with a random variable Tc that takes values from
dom(c) (domain of cell c). It then uses a proba-
bilistic graphical model (factor graph) to en-
code the distributions of random variables
Tc. The data repairing step uses empirical risk
minimization (ERM) algorithm to estimate the
parameters of the probabilistic model and com-
putes themarginal probability P (Tc = d; Ω,Σ).
Clean cells of Dc are treated as labeled exam-
ples to learn the parameters of the model. Each
suggested repair by the HoloClean framework has
an associated probability with it. This probability
is inferred as the confidence of the suggested re-
pair and can be used to decide whether the repair
can be applied directly or to be sent for manual
review. The user-verified repairs can be further
used as labeled example to retrain the model pa-
rameters. HoloClean uses DeepDive [38], which
uses a declarative language DDlog, to write in-
ference rules and construct factor graphs. It
has a compiler that converts integrity constraints
to a DDlog program containing inference rules.
Scalability of HoloClean is affected by two factors:
random variables (or attributes) that have large
domains and factors that involve multiple tuples.
HoloClean implements two pruning strategy to
make the system efficient. It prunes the domain
of random variables using co-occurrence of
other cell values in the tuple containing the
cell of interest c. To prune the factors involving
multiple tuples, HoloClean limits the number
of tuples to consider for the identification
of constraint violations. It implements a prun-
ing strategy in which tuples are binned into groups
such that the tuples in the same group have
high probability of constraint violation, and
hence tuples in the same bin are further consid-
ered for constraint violation. The performance of
HoloClean is evaluated on 4 real-world datasets to
validate its accuracy, scalability and effect of dif-
ferent signals on data cleaning task. HoloClean’s
approach of unifying multiple repairing sig-
nals results in 2× improvement on F1-score
over the techniques that consider isolated signals
for data repairing. Apart from this, the imple-
mented pruning strategies lead to high accurate
repairs with scalability. [32]

Holistic Data Cleaning is a data clean-
ing framework which considers the interaction
among different classes of constraint vio-
lations and takes holistic view of the viola-
tions to come up with the repair strategy. It
compiles violations as a Conflict Hypergraph
(CH) and uses novel holistic repairing algo-
rithm to come up with the repairs with respect
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to one unified objective function. Integrity
constraints in holistic data cleaning framework
are represented as unified denial constraints
(DCs), which takes the form:

c1 : ¬(G(c, r, s), G(c′ , r′, s′), (c = c
′
), (s = s

′
))

c2 : ¬(G(c, r, s), G(c′ , r′, s′), (r = r
′
),

(c = “NY C”), (c
′ ̸= “NY C”), (s

′
> s))

(15)

DC c1 means that if two tuples have the same
value for attribute c, attribute s should be the
same. DC c2 means that if two tuples have the
same value for attribute r and different values for
attribute c, where one of the tuple has attribute c
as “NY C”, the value of attribute s for the tuple
having c = “NY C” should be greater. Given a set
of denial constraints Σ and a database instance I,
such that I ̸|= Σ (I does not satisfy all the DCs
in Σ), the goal of data cleaning is to find the
minimal cost repair Ir, such that Ir |= Σ, where
the cost of the repair is given as:

cost(Ir, I) =
∑

t∈I,t′∈Ir,∀A

distA(t[A], t
′
[A]) (16)

Holistic Data Cleaning framework uses squared
Euclidean distance (called as distance cost)
as distance measure for numeric values. The prob-
lem of finding minimal distance cost repair is NP-
complete. The framework uses conflict hyper-
graph (CH) to encode constraint violations
and repair context (RC) to encode violation
repairs. CH encodes all violations in a graph
where nodes represent violating cells and
edges link the cells involved in the same vi-
olation . At least one of the violating cells should
be changed to repair the violation. A naive algo-
rithm picks edges one-by-one and repairs the con-
nected cells. This approach will lead to a valid
repair but the minimal cost repair is not guar-
anteed. Holistic Data Cleaning uses minimum
vertex cover (MVC) algorithm to look at the
violated constraints holistically and find the min-
imum cost repair. It first identifies the cells that
need to be changed (called as frontier) and cre-
ates a list of new cell assignments and constraints
for the selected frontier (called as repair expres-
sion). The frontier and the repair expression to-
gether is called as Repair Context (RC), which
contains the sufficient and necessary infor-
mation to repair all cells in a frontier. Given
a Repair Context, Holistic Data Cleaning finds the
minimum cost repair as per the used cost func-
tion. After each repair, CH is updated as re-
pairing a constraint may lead to other violations.
This holistic approach of considering all con-
straints on the connected cells reduces the

number of changes leading to efficient and minimal
cost repair. Detecting violations and building CH
is the most expensive step of the algorithm. For a
dataset of sizeD and aDC having c attributes, the
time-complexity of the naive algorithm is O(Dc).
Optimization is done by dividing data into blocks
of size B, and the DC violation is checked on each
of the blocks making the time complexity O(Bc).
To repair the violations, the cell value can either
be changed to a pre-existing value in domain of the
attribute or a fresh value is chosen. The per-
formance of Holistic Data Cleaning is evaluated
on real-world and synthetic dataset. The frame-
work outperforms the techniques which use
constraints in isolation in all the cases. For
random errors, the recall of the algorithm is low.
The framework produces low precision results for
dataset having errors in numeric attributes as find-
ing accurate values for numeric attribute is a chal-
lenging task. [6]

Katara is a data cleaning framework that uses
knowledge base (KB) and crowdsourcing to
clean data. It uses table patterns to map a ta-
ble to the available knowledge base. Each table
pattern is a directed graph, with node represent-
ing column and directed edge between them rep-
resenting relationship between the nodes. Katara
uses crowd to validate the generated table
patterns. Once the table pattern is identified,
Katara annotates data points as: KB validated
- correct tuple validated by KB, KB and crowd
validated - validated by KB and crowd, and erro-
neous tuple - identified by KB and crowd. Katara
formulates KB K as being build of individual re-
sources (each real-world entity is associated with
a unique resource) and properties (relation-
ships) (represents relationship between two re-
sources). Resource representing a set of objects
is called a class. Each attribute Ai has certain
type (type(Ai)), and any attribute pair (Ai, Aj)
are related through a property P where one of
the attributes is a subject and another one an
object. A table pattern φ for a table T is
a directed graph G(V,E), where each node
u ∈ V corresponds to an attribute (possibly
typed) in T and edge (u, v) ∈ E represents re-
lationship P between the attributes u and v.
A tuple t ∈ T matches a pattern φ if there exist
a one-to-one mapping between attributes of
tuple t with nodes in φ, with the types of tuple
value match with the types of nodes (or a subclass
of types of nodes), and the property (relationship)
tagged to each edge should match the relationship
between the corresponding tuple attributes. For
example, tuple t1 in Figure 2(b) matches the pat-
tern φs in Figure 2(a), as all the attribute values

10



Figure 2: Katara: Solution Overview [7]

of the tuple t1 has one-to-one correspondence with
pattern nodes with the properties of edges being
equal. A tuple and a pattern is a partial match
if either type of one of the attribute of the tuple
or one of the property of an edge does not match
(tuple t2 in Figure 2(c)). To map a table to a KB,
Katara follows a more general query based ap-
proach instead of relying on attribute names be-
ing meaningful. It poses a query to KB K to get
the matching type for attribute values and to iden-
tify the relationship between a pair. Once prob-
able candidates are identified, Katara uses a tf-
idf based ranking algorithm to score them and
pick type and property of attributes and attribute
pairs. For example, if a column contains “Apple”
and “Microsoft”, “Apple” will be tagged with type
“Company” and “Fruit”, while “Microsoft” will
only be tagged with type “Company” and hence
taking precedence while deciding the type of the
column. To identify the property (relationship),
Katara relies on coherence score. Every rela-
tionship in Katara has a subject and an object, and
coherence score measures “how likely an en-
tity of type T appears as the subject/object
of the relationship P”. Given a type T and a
pattern P , Katara gives a coherence score for
each of the subject (subSC(T, P )) and object
objSC(T, P ) of P , where T serves as the source.
Given ENT (T ) (set of entities in K of type T ),
subENT (P ) (set of entities in K that appears as
subject of P ), objENT (P ) (set of entities in K
that appears as object of P ), and N as the total

number of entities in K; Prsub(P ) =
|subENT (P )|

N
gives the probability of an entity appearing

as the subject of P and Pr(T ) = |ENT (T )|
N gives

the probability of an entity belonging to T .
Katara then computes pointwise mutual infor-
mation (PMI) for the subject as:

PMIsub(T, P ) = log
Prsub(P ∩ T )
Prsub(P )Pr(T )

(17)

where Prsub(P ∩ T ) = |ENT (T )∩subENT (P )|
N is the

probability of entity of type T appearing as the
subject of P . PMI is further normalized as:

NPMIsub(T, P ) =
PMIsub(T, P )

−Prsub(P ∩ T )
(18)

Katara computes the normalized PMI for ob-
ject similarly and gives the coherence score of
a pattern as the sum of tf-idf based score for
types and coherence scores for subjects and
objects. The system then identifies the top-k
pattern based on the computed scores us-
ing rank-join algorithm. Katara uses crowd
to validate ambiguous patterns. It poses ques-
tions of the format “What is the most accurate
type of the highlighted column?” and “What
is the most accurate relationship for high-
lighted columns?”; along with randomly chosen
samples from the table to identify the type and re-
lationship for attributes. To reduce worker errors,
each question is asked three times, and the ma-
jority answer is accepted. For data annotation,
Katara auto-labels tuples which satisfy all the cri-
teria of the identified pattern (fully-covered tu-
ples of Figure 2(b)), and asks crowd to label the
tuples which does not satisfy any one of the pat-
tern criteria (partially-covered tuples of Figure
2(c)). To suggest possible repairs, Katara calcu-
lates the repair cost of a violation as the sum of
the cost of changing values in tuple t to align it
with the identified pattern and picks the top-k re-
pairs on the basis of repair cost. It leaves the
final repair selection for crowd. Empirical
evaluation of Katara on real-world data cleaning
task shows high precision and recall for pattern
validation and discovery. Katara’s data annota-
tion system achieves ≥ 95% accuracy for all the
datasets with on an average of ∼ 65% of anno-
tations done using KB. Suggested possible repairs
of Katara have high precision for the cases when
KBs have enough coverage of the input data. [7]

DBpedia is an information extraction
framework that converts Wikipedia content into
Resource Description Framework (RDF)
format. Its dataset comprises 103 million
Wikipedia RDF triples, and when integrated
with external data sources, it expands to 2 bil-
lion RDF triples. DBpedia accomplishes this
by mapping existing relational database table re-
lationships to RDF and extracting additional in-
formation from Wikipedia article texts and in-
fobox templates. Its infobox extraction algo-
rithm identifies infobox templates and discerns
their structure using pattern matching techniques.
Post-processing methods are then applied to en-
hance extraction quality. DBpedia datasets can
serve as the knowledge base for data cleaning
algorithms and can be accessed through: Linked
Data, SPARQL protocol, and downloadable RDF
dumps. [1]
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4 Missing Values, Outliers,
Anomalies and Adversarial
Examples

Missing values, outliers, anomalies, and adversar-
ial examples pose significant challenges in machine
learning and data analysis tasks, potentially lead-
ing to biased models and inaccurate predictions if
left unaddressed. This section explores a diverse
range of representative data cleaning techniques,
providing detailed insights into their functionali-
ties and outcomes for handling these data errors.

4.1 Missing Values:

DataAssist is an automated data cleaning
and preparation framework that performs the
cleaning task based on user specific requirements
and can be integrated seamlessly with existing au-
toML tools. It gives the end-user options to
handle missing values by either removing them
or utilizing the underlying SVM model to iden-
tify and apply the suitable imputation technique.
DataAssist supports various outlier detection
algorithm, such as IQR, DBSCAN, and Isola-
tion Forest. Once the outlier detection is done,
users are prompted to visualize outliers, and take
appropriate action as per the results. For dupli-
cate and inconsistency detection, DataAssist has a
learnable similarity function, which is trained
to classify pair-wise objects as similar or dissim-
ilar. It also provides pre-processing options, such
as data transformation, feature extraction and pri-
oritization of the cleaning of essential features.
[13]
Data Linter is an automated ML tool

designed to analyze summary statistics of
ML training data to detect potential data er-
rors (duplicates and missing values), termed as
data lints, and recommend essential feature
transformations based on the chosen ML model.
Users can also incorporate custom data lint detec-
tors tailored to specific use cases. The tool has
three main modules: LintDetectors, DataLin-
ter, and LintExplorer. LintDetectors are model
and error-specific. They are applied to the dataset
and require summary statistics, data instances,
feature names, and metadata to generate LintRe-
sults which contain suggested issues or transfor-
mations with relevant sample data. LintExplorer
presents the identified issues along with sample
data to the end user. The system includes pre-
built data lints for common issues like duplicates
and missing values, as well as generic feature
transformations. The tool was evaluated for the
usability in real world ML development cycle, and

its performance was further evaluated on 600 Kag-
gle datasets. In the ML development cycle, Data
Linter suggested a feature transformation which
increased the precision of the model from 0.48 to
0.59, and flagged duplicate training data which
was missed in the usual run. On the Kaggle
datasets, Data Linter identified on an average
of 4 data lints per dataset, with no false neg-
atives found in manual analyses of randomly
selected instances. [16]

Query-Oriented Data Cleaning (QOCO)
is a novel query-oriented system that interacts
with domain experts (modeled as oracles) to re-
move or add incorrect or missing values from
an unclean database based on the results of a
query. For an unclean database D and the
ground truth database DG, oracle will have
the knowledge of DG. For any query Q and tu-
ple t, there will be three types of answers - True
Answer: if t ∈ Q(D) and t ∈ Q(DG); Miss-
ing Answer: if t ∈ (Q(DG) − Q(D)); Wrong
Answer: if t ∈ (Q(D) − Q(DG)), where Q(.) is
the result of query Q on the concerned database
and t ∈ Q(D) means that tuple t exists in the
response of query Q over D. Whenever the ora-
cle says that an answer is wrong or missing,
the data base D is cleaned to D

′
, such that

t /∈ Q(D
′
) for the wrong tuple and t ∈ Q(D

′
)

for the missing tuple. To get to the database
D

′
, a sequence of edits are performed based on

the responses from the oracle. The edits can be
of two types - Insertion Edit: R(a)+, if a tu-
ple a is added to the relation R; Deletion Edit:
R(a)−, if a tuple a is deleted from the relation
R. The update in any tuple can be done by a se-
quence of deletion and insertion edits. The
updated database after the edit e is represented
as D ⊕ e. The problem of finding the optimal
sequence of edits based on a query Q, also
called as edit generation problem, can be for-
mulated as finding the edits e1, e2, ..., ek by having
the minimal interaction with the oracle to change
the database D to D

′
such that Q(D

′
) = Q(DG),

where D
′
= D ⊕ e1 ⊕ e2 ⊕ ... ⊕ ek. The notation

Q(D
′
) = Q(DG) doesn’t mean that D

′
= DG. In-

stead, it means that with respect to the query
Q, the databases D

′
is equivalent to DG,

though D
′
may still be dirty. Every edit e takes

the dirty database D closer to DG; and any de-
sired target action via edits can be achieved by
using oracle’s response to a finite number of
questions. The task of removing a wrong answer
(finding a deletion edit) and the task of adding a
missing tuple (finding an insertion edit) are NP-
hard and can be reduced to Hitting Set Prob-
lem [27] and One-3SAT Problem [27] respec-
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tively. QOCO uses greedy algorithms to find the
optimal solutions, and employs binary YES/NO
queries to find deletion edits and straightforward
questions to identify insertion edits. [2]
Wu et al., 2020 proposed AimNet, an

attention-based model tailored for imputing
missing values in mixed data sets compris-
ing both discrete and continuous variables.
AimNet leverages a novel version of the dot prod-
uct attention mechanism to learn structural
properties of the data distribution at the schema
level. It directly processes raw tabular data, re-
quiring minimal pre-processing (mapping dis-
crete values to trainable embeddings, and
z-score normalization for continuous val-
ues). AimNet is trained using self-supervised
gradient descent-based end-to-end learning.
Given a dataset D having schema R, and a
ground truth database D∗, the goal of miss-
ing data imputation is to find the imputed ver-
sion D̃ of D, such that for every tuple t̃i ∈ D̃,
all the cell values should be same as the corre-
sponding tuple t∗i ∈ D∗. The set of attributes
A ⊆ R for which missing values are there are
called target attributes and the set of remain-
ing attributes A

′ ∈ R \ {A} are called context
attributes. AimNet uses an autoencoder ar-
chitecture tailored for mixed data types, employ-
ing a combination of projections for contin-
uous data and contextual embeddings for dis-
crete data. It leverages a novel variation of the dot
product attention mechanism to capture structural
dependencies within the input data. Attention
weights are employed to merge representations of
various data coordinates into a cohesive context
representation for a target attribute, followed by a
non-linear transformation for imputation. Train-
ing incorporates a mixed loss function to accom-
modate diverse data types. Continuous attributes
are projected onto a k-dimensional vector space,
while discrete attributes undergo learning of a con-
textual k-dimensional embedding. Continuous at-
tribute Ai with value x ∈ Rni (ni ≤ k) is stan-
dardized across each dimension to zero mean
and unit variance as: x̄j =

xj−µij

σij
∀j = 1, 2, ..., ni.

A linear layer followed by a ReLU layer is then
applied to the transformed vector to get the k-
dimensional embedding:

z = Bσ(Ax̄+ c) + d (19)

where σ is the ReLU and A,B, c, d are learnable
parameters. For the embedding of discrete at-
tributes, a lookup table of discrete context
embedding is learned. The output of the at-
tention layer is a context vector of dimension k
which contains the necessary information to

perform imputation on the target attribute.
The context vector of continuous target attribute
Aj is projected to its dimension dj by passing
the context vector through a fully-connected
ReLU layer of dimension k × k, followed by a
linear transformation to the attribute’s dimension
dj . The resulting predicted value for the cell is
compared to the actual continuous value using the
mean squared loss. For discrete attribute, the in-
ner product between the context vector from the
attention layer and the discrete target’s vector em-
beddings for the cell’s domain values is computed.
A softmax function is then applied to the inner
products to generate prediction probabilities for
each domain value. HoloClean framework with
AimNet is evaluated on 14 real-world datasets
and its performance is compared to state-of-the-
art baseline methods. Missing values are injected
with a probability of 0.2 (following MCAR prin-
ciple) for each of the attributes in the datasets.
Accuracy and normalized root mean square
error are used as evaluation metrics for discrete
and continuous attributes. AimNet surpasses
state-of-the-art systems by up to 43% in
accuracy for discrete attributes and up to
26.7% in normalized-RMS error for contin-
uous attributes. Additionally, AimNet achieves
significantly faster run times, up to 54% lower,
compared to other baselines on datasets with large
discrete domains. The ablation study by removing
attention layer shows that as the number of classes
increases, the attention mechanism contributes to
over 50% of the prediction accuracy. [43]

4.2 Outliers and Anomalies:

Breck et al., 2019 proposed a novel approach
for anomaly detection that uses expert do-
main knowledge to codify data characteris-
tics in the schema which are further used to
detect anomaly in any batch of ingested data.
The system supports single and inter-batch
validation. The data characteristics tagged to
the schema is used for single-batch validation.
Inter-batch validation flags any significant de-
viation in statistical measures across multiple
data batches or between training and serving
data. It uses feature skew, distribution skew
and scoring/serving skew to detect inter-batch
anomalies. Feature and distribution skew en-
code deviation in categorical and continuous fea-
tures respectively of a new batch of data. Scor-
ing/serving skew occurs when out of all the pre-
dicted or scored data points by a ML model, only
a subset is used for further processing (for exam-
ple, for a recommender system if out of a total
of 100 recommended products only top 10 prod-
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ucts are shown to the end-user every time, and
further used for re-training based on user’s ac-
tion). This strategy further amplifies the model’s
poor performance on the discarded recommended
data points. Techniques which quantify the dis-
tance between distributions (KL divergence,
cosine similarity etc.), or goodness of fit sta-
tistical tests (chi-square test etc.) are primarily
used to detect these skews. The system’s perfor-
mance was evaluated across over 700 production
ML pipelines, revealing significant schema evolu-
tion over time. Nearly 90% of cases saw up to
five schema revisions, indicating stabilization
of input data properties after a few iterations. The
system demonstrated a fixing rate of over 50%
for anomalies in nine out of ten suggested
categories. Notably, the Google Play team uti-
lized the system to uncover a feature skew, result-
ing in a 2% increase in the app install rate
on the main landing page of the app store after
correction. [4]

ActiveClean is an iterative data cleaning
system that adapts already existing data
subset cleaning techniques for a statisti-
cal modeling framework with the guaran-
tee of convergence for outlier removal and
attribute transformation. The system ap-
proaches the data cleaning challenge as the issue
of the machine learning model being affected by
the dirty dataset it’s trained on. Consequently,
it takes in the model, feature functions, and the
dirty data to seek out the global clean model.
The system guarantees global convergence for
convex-loss models like SVMs, Linear Regres-
sion, and Logistic Regression. The system treats
the cleaning operation C(.) as a black-box that
takes the dirty record r as the input and either
modifies it to give the clean record r

′
= C(r) or

delete the dirty record ϕ = C(r). The clean rela-
tion Rclean can then be denoted as

Rclean = ∪Ni=1Ci(ri ∈ R) (20)

where R is the dirty data set. The proposed
system consists of following modules: Sampler,
Cleaner, Updater, Detector and Estimator.
Let θ(d) be the model trained on unclean relation
R, θ(dc) the optimal clean model and θ(t) the
current best model at iteration t. Sampler
selects a sample of dirty data S from R randomly
and passes it to the cleaner. Cleaner is a user de-
fined module which takes each of the dirty record
and gives a clean version of it. Updater updates
the model using gradient descent and clean batch
of data. The process continues until the system
terminates as no dirty data is left or some early
stopping criteria such as number of iterations is

met. Detector helps sampler in identifying the
most likely dirty records and hence helping in fast
convergence of the algorithm. Figure 3 shows how
ActiveClean works. As seen in figure 3, even if
a usual model trained on the dirty data achieves
global optimum (red star), its performance (shown
as red solid dot on blue curve) on ideal clean
data will be sub-optimal. This sub-optimal model
needs to be further updated to reach the actual
global optimum (optimum point on clean data,
shown as yellow star on the blue curve). The up-
date in the dirty model is achieved as:

θnew ← θ(d) − γ · ∇ϕ(θ(d)) (21)

where ϕ is the convex loss function and ∇ϕ
is its gradient. This gradient should be calcu-
lated on the entire clean data, which is usually not
available, and hence ActiveClean approximates it
from a sample of cleaned data. ActiveClean can
also be applied to non-convex loss models but in-
stead of converging to global optima, it will con-
verge to a local optimum point. The performance

Figure 3: ActiveClean: How it works? [21]

of ActiveClean is reported with respect to model
error (distance between the ActiveClean trained
model and true model) and test error (accuracy
of model on test data). The experimental results
show that the ActiveClean converges faster
compared to other data cleaning methods
as it uses adaptive detector to exploit the system-
atic error present in the real-world datasets. [21]

Potter’s Wheel is an interactive data
cleaning system where users can gradually
build transformations by composing and de-
bugging transforms, one step at a time, on
a spreadsheet like interface to flag anoma-
lies. It shows the effects of transforms in real-time
and if they are not desirable, can be undone.
Discrepancy detection is automated and runs
in background (even on the newly transformed
data). The system suggests the transformations
based on the desired results on the sample
data provided by the end-user. The primary com-
ponents of Potter’s Wheel are: Data Source,
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Transformation Engine, Online Reorderer,
and Automatic Discrepancy Detector. Data
Source takes dataset and integrates it with the
Potter’s Wheel system. As the dataset integration
starts, a spreadsheet like interface appears, which
allows users to iteratively sort and reorder data
values on sample dataset. Transformation en-
gine applies user-specified transforms in real-time
on the data loaded on the screen of the spreadsheet
interface giving a notion of instantaneous trans-
formation. Automatic discrepancy detector
runs in background that consumes the raw data
or its transformed value, and passes them to the
suitable sub-components (depending on the in-
ferred structure of the attribute). Each sub-
component has appropriate algorithm tagged to
it, which is then used to identify the discrepancy
in data value. Tagging data values to a sub-
component depends on the domain of data
values. For example, a data value 19 January
06:45 has the structure ⟨number⟩⟨word⟩⟨time⟩
and needs to be tagged to the sub-component as-
sociated with domains: ⟨number⟩, ⟨word⟩, and
⟨time⟩. To define domains, Porter’s Wheel pro-
vides a programmable interface, which uses a
user-implemented function named “match”
to tag data values to the domain. The system
comes with a set of pre-implemented ready-
to-use domains. The domain associated with
a data value depends on its structure. Given a
set of values v1, v2, ..., nn in a column, and a set
of domains d1, d2, ..., dm, structure extraction
means choosing the best structure that fits
given set of values. Two extreme structures
that fit the value 19 January 06:45 are: ⟨ξ∗⟩ (rep-
resenting ASCII string of arbitrary length) and
⟨19 January 06 : 45⟩. ⟨ξ∗⟩ is concise and have
higher recall but the second one is precise and will
not encode any other value in the column. Hence,
the task of structure extraction is to find a bal-
ance between the properties: recall, precision,
and conciseness. Description length (DL)
is used as the metric to encode structure qual-
ity. Better structure will have smaller de-
scription length . DL of the structure used to
encode a column value is the length of the struc-
ture definition plus the length required to en-
code the values given the structure. Con-
ciseness is directly captured by length of the
structure definition. The length required to
encode the values given the structure cap-
tures the precision (for the values that match
the structure). The values in a column that do
not match the structure are encoded explicitly as
themselves capturing a structures’ recall. The
task of choosing the best structure means enumer-

ating all the structures matching the values in the
column and choose the one with the lowest DL
score. Instead of matching the structure on the
entire set of column values, Potter’s Wheel takes
a sample of column values for the purpose. The
number of structures that are considered for the
matching is pruned by removing redundant
structure like ⟨word⟩⟨word⟩ (this is equivalent
to ⟨word⟩). Once the domain (based on the de-
rived structure) of a column is identified, the al-
gorithm tagged to the identified domain is used
to detect discrepancy in column values. For ex-
ample, for domain ⟨Integer⟩, a typical algorithm
that can be used to flag potential errors is iden-
tifying the values that are 2 standard deviation
away from the mean. Transformations in Pot-
ter’s Wheel are applied on an interactive fashion.
Users can construct transformations gradu-
ally, and can adjust and undo them based
on feedback. Potter’s Wheel supports inbuilt as
well as user-defined transforms, which can be de-
fined through examples by performing them on se-
lected sample values, and the system picks up the
suitable transformations based on these examples.
[31]

DBSCAN is a density based clustering al-
gorithm which can be used to detect outliers
and anomalies in a dataset. Figure 4 shows a
sample density based clustering approach where
each probable cluster has a typical density of
points which is significantly higher than out-
side of the cluster. The idea of density based

Figure 4: Density Based Clustering: Sample
Datasets [9]

clustering is based on the fact that for each
point in a cluster, the neighborhood within
a specified radius must have a minimum
number of points. Distance function (de-
noted as dist(p, q) for the points p and q) de-
cides the shape of the neighbourhood. For Man-
hattan distance in 2D space, the shape of the
neighborhood is rectangular. DBSCAN uses a
concept of density-reachable points to decide
the clustering results. For a dataset D, the
Eps-neighborhood of a point p is defined as
NEps(p) = {q ∈ D|dist(p, q) ≤ Eps}. A point
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p is directly density-reachable from point q if
p is in Eps-neighborhood of q (p ∈ NEps(q)) and q
is a core point (|NEps(q)| ≥MinPts). A point p
is density-reachable from point q, if there exists
a chain of points p1, p2, ..., pn; p1 = q; pn = q such
that pi+1 is directly density-reachable from pi.
This is an extension of directly density-reachability
and forms a chain of density-reachable points.
The border points of a cluster may not be di-
rectly density-reachable from each other but there
will always exist a core point from which these
points will be density-reachable. This is termed as
density-connectivity. Two points p and q are
density-connected if there exist a point o such
that both the points p and q are density-reachable
from o. For a database D, a cluster C with re-
spect to Eps,MinPts is a non-empty subset of
D, such that

1. ∀p, q, if p ∈ C and q is density-reachable from
p, then q ∈ C. (Maximality)

2. ∀p, q ∈ C, p is density-connected to q. (Con-
nectivity)

Noise is the set of points in D which are not
in any of the identified clusters. Given Eps and
MinPts, a cluster is discovered by taking an ar-
bitrary point (satisfying the core point condition)
as the seed and placing all the points density-
reachable from the seed into the cluster. The
clusters are further merged based on distance be-
tween them. The distance between two set
of points S1 and S2 is defined as dist(S1, S2) =
min{dist(p, q)|p ∈ S1, q ∈ S2}. Two clusters
are merged if distance between them is less
than Eps. The time-complexity of the DBSCAN
algorithm is O(n log n). The optimal values of Eps
and MinPts are determined using the concept of
d-neighborhood and by locating the first point
in the first valley of the sorted k-dist graph.
DBSCAN identifies the clusters of arbitrary shape
more efficiently and accurately and can success-
fully isolate the noisy data points. [9]
HoloDetect is a few-shot learning frame-

work for error detection (anomalies) that
uses weak supervision, leveraging less precise or
higher-level signals to train high-quality ML-
based error detection system. The proposed
system does not need explicit feature engineering
and addresses the extreme data imbalance and
diversity in a cohesive manner. It uses a rep-
resentation learning framework to eliminate
the need for feature engineering in error detection.
The system utilizes a template ML-model to
learn a comprehensive representation, encompass-
ing attribute, tuple, and dataset-level fea-
tures. To tackle the challenges of heterogene-

ity and imbalance, the system uses a data aug-
mentation methodology which exploits weakly su-
pervised methods, and learns data transfor-
mations and augmentation policies from a
small set of labeled data. Given a dataset D
with CD being the set of all the cells contained
in D, a cell c ∈ CD is erroneous if its un-
known true value v∗c is different from its
observed value vc, i.e. vc ̸= v∗c . A training
dataset T = {(c, vc, v∗c )}c∈CT

, where CT ⊂ CD

is a set of tuples whose true and observed values
are known. For each tuple c ∈ CD, an indicator
Ec = {−1, 1} is stored, where −1 means that the
cell is erroneous and 1 means otherwise, with e∗c
its unknown true assignment. The goal of the
error detection system is to find the most prob-
able assignment êc for each cell c ∈ CD \ CT

such that êc = e∗c . HoloDetect models the
distribution of correct and erroneous data,
enabling it to discriminate between valid and er-
roneous data values. Let I∗ represents the clean
data distribution (characterized by attribute, tu-
ple, and dataset-level features), i.e. P (v∗c ) ∼ I∗,
where erroneous cell values have low probability.
Error is added through a conditional probability
distribution R∗ ∼ P (vc|v∗c ). The goal of HoloDe-
tect is to learn I∗ and R∗. HoloDetect learns a
representation model jointly with a classifier,
and a generative model H to approximate I∗

and R∗ respectively. The data augmentation mod-
ule of HoloDetect uses a set of transformations Φ
and a policy Π ∼ P (Φ|vc), such that each trans-
formation ϕ ∈ Φ transforms the original value of a
cell c as ϕ(vc) = v

′

c. The cell values are treated
as strings and the transformation function ϕ
introduces errors by adding, removing, or ex-
changing characters as v = ϕ(v∗). To select the
transformation, the channel samples the transfor-
mation from ϕ ∼ P (Φ|v∗) = Π(v∗) and applies it
to v∗. The data augmentation module of HoloDe-
tect learns the noisy channel distribution R∗,
which is specified by Φ and a policy Π, using the
given example training data set. It uses a pat-
tern matching based algorithm, which returns
a set of valid transformations Φe, containing
specialized (applied at a particular location in
a string) and generic transformations (can be
applied to any position to any input). R∗ is then
used to generate additional training exam-
ples TH by transforming some of the labeled
set. The empirical evaluation of HoloDetect shows
that it consistently outperforms other error detec-
tion methods, showing improvements of up to 20
F1 points in some cases. HoloDetect averages a
precision of 92% and a recall of 96% across evalu-
ated datasets. [15]
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Isolation Forest (iForest) is an anomaly de-
tection algorithm, which is built upon anoma-
lies being “few and different”. The algorithm
uses Isolation Tree or iTree, in which anoma-
lies are isolated closer to the root of the
tree, while normal points are isolated at
the deeper end of the tree. iForest efficiently
identifies anomalies without constructing the full
isolation tree for normal points, reducing compu-
tational overhead. It doesn’t rely on distance or
density calculations, eliminating major computa-
tional costs. iForest creates partitions in dataset
to isolate data points. Partitions in iForest are
created by randomly selecting attributes and split
values. The path length from the root to a ter-
minating node indicates the number of partitions
required to isolate a point. Normal points typ-
ically have longer path lengths compared
to anomalies. With each tree using different
partitions, averaging path lengths across multiple
trees yields the expected path length. Increas-
ing the number of trees improves the accuracy of
the average path length estimation. A tree node
T can either be an external-node (no child) or
an internal-node (with exactly two daughter
nodes (Tl, Tr) and a test). The partition test
takes the form q < p where q is an attribute and p
is the split value. Attribute and split value for
a test is selected randomly from all the set of at-
tributes and a value in between the maximum and
minimum value of the selected attribute respec-
tively. Given a sample data X = {x1, x2, ..., xn},
the algorithm iteratively selects q and p and di-
vides X until the tree reaches a height limit, or no
data point is left |X| = 1, or all the data points
have the same value. An iTree is a binary tree
and a fully grown tree will have a total of n exter-
nal nodes and n−1 internal nodes. Data points
are sorted based on their path length and the ones
with the shorter path lengths are flagged as
anomalies. Path length h(x) is the number of
edges that need to be traversed to reach a data
point. The estimation of average path length
for external node is same as the unsuccessful
search in BST, and is given as:

c(n) = 2H(n− 1)− 2(n− 1)

n
(22)

where H(i) = ln(i)+ ϵ is the harmonic number,
with ϵ = 0.5772156649 being the Euler’s con-
stant. The anomaly score of a data point x is
defined as:

s(x, n) = 2−
E(h(x))

c(n) (23)

where E(h(x)) is the expected value of the path
lengths h(x) for all the iTrees. The anomaly score
s is monotonically decreasing with respect to av-
erage path length h(x) and can be used to flag

anomalies instead. Value of s closer to 1 means
anomaly. Value of s much smaller than 0.5 means
data point is normal. If all the data points have
anomaly score s closer to 0.5, this means that the
sample does not have anomalies. iForest doesn’t
need to isolate every normal instance, as it can
effectively work with a partial model, especially
when dealing with large datasets. Sub-sampling,
achieved through random selection of instances
without replacement, helps iForest perform well
by preventing swamping and masking effects.
Swamping occurs when normal instances out-
number anomalies, while masking happens when
anomalies are concealed by their own abundance.
iForest’s unique approach allows it to build a par-
tial model through sub-sampling, mitigating the
challenges posed by swamping and masking. For
a sub-sampling size of ψ, the the tree height limit
l can be set as l = ⌈ln2(ψ)⌉, as anomalies will
more likely to have a path length less than the
average tree height. Increasing sub-sampling
size ψ increases processing time and mem-
ory requirement without much gain in de-
tection capability. Setting ψ = 256 provides
enough samples to perform anomaly detection in
most of the cases. Number of tree t controls
the ensemble size. t = 100 leads to convergence
in most of the cases. To adjust the average path
length for partially built tree, an adjustment factor
proportional to the size of the tree is added in the
average path length. To identify the top m anoma-
lies, the data is sorted in descending order based
on the anomaly score s. The first m instances
in the sorted list represent the top m anomalies.
Kurtosis test can be used in high-dimensional
data setting to enhance the performance of iForest.
With linear time complexity, low memory require-
ments, and scalability to high-dimensional large
datasets, iForest is well-suited for real-world ap-
plications. [24]

Raha is a semi-supervised error detection
method (anomalies and outliers) that limits
the user involvement by auto-configuring underly-
ing error detection algorithms. It assigns a fea-
ture vector to each data cell, with each com-
ponent representing the binary output of a
specific error detection algorithm configu-
ration. The feature vector captures outputs from
four main traditional error detection techniques:
outlier detection, pattern violation detec-
tion, rule violation detection, and knowledge
base violation detection algorithms. Each
technique is automatically configured with a
limited set of parameters, such as thresholds
for outlier detection or patterns/rules for viola-
tion detection. The exponential complexity of con-
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figurations is managed by setting boundaries
and discretizing parameters. The results from
these configurations are aggregated to create a fea-
ture vector for each data cell. The cells in each
data column are clustered based on these feature
vectors, and users are only required to label
one data point from a cluster at a time. This
labeled data is then propagated to all other values
within the same cluster, yielding additional noisy
training data. Given a datasetD, a set of available
error detection algorithms B = {b1, b2, ..., b|B|},
and a labeling budget θlabels, the goal of Raha
is to identify all data errors in D. Individual er-
ror detection algorithms can have numerous pos-
sible configurations, and each combination of al-
gorithm and configuration is treated as unique
error detection strategy. For an error detec-
tion algorithm b, let the space of configuration be
Gb = {g1, g2, ..., g|Gb|}, the subset S ⊆ B × Gb

is the subset of all possible error detection
strategies. The possible configurations for each
each error detection algorithm is selected system-
atically, generating error detection strategies that
mark data cells as errors. Raha collects the out-
put of these strategies to create a feature vector
for each data cell, where each element represents
whether a strategy flags the cell as an error or not.
Raha further post-processes the generated features
to remove non-informative features for each
attribute (column). Individual clusters are gen-
erated for each attribute, and cells with similar
feature vectors are grouped as same cluster. Users
label a sample tuple from a cluster, and Raha
propagates these labels to other cells in the same
cluster (called as noisy labels). To manage label-
ing at the cluster level, the number of clusters k
per column should be controlled as per the labeling
budget. Smaller k values result in larger clusters,
which may contain a mix of dirty and clean cells.
Conversely, larger k values create more clusters,
demanding more labels from the user. Raha uses
hierarchical agglomerative clustering and let
the user decide the number of samples in a clus-
ter as per the labeling budget. In the case, when
same data point is labelled by multiple users, con-
flict is resolved using majority voting. Using
these labeled data, Raha trains individual clas-
sification models for each of the attributes,
which are then used to predict labels for remaining
unlabeled cells. Though individual classifiers are
trained for each attribute, attribute dependency is
captured through features generated by rule and
knowledge base based violations. Raha uses his-
torical data to decide the important features up-
front by utilizing the fact that the similar error
detection strategies perform similarly on compa-

rable data domains. For instance, for a column
like “City”, error detection strategies that were
effective on the column “Capital” in past datasets
would perform better. For this purpose, Raha
maintains column profiles which capture syn-
tactic (based on similarity of data distribution)
and semantic similarity (by overlap of data val-
ues) between data columns. Empirical evaluation
of Raha shows that it surpasses standalone error
detection tools across all tested datasets, achiev-
ing an F1 score improvement ranging from
12% to 42%. Its effectiveness decreases marginally
with higher user labeling errors. However, the con-
flict resolution function, which relies on majority
voting, helps alleviate this issue to some extent.
[26]

4.3 Adversarial Examples:

Grosse et al., 2017 proposed a statistical tests
based adversary detection system which
leverages the distinctiveness of adversarial exam-
ples from the expected data distribution. Ad-
ditionally, they recommend that the ML models
can be enhanced by incorporating an extra out-
put dedicated to adversarial examples, effectively
training the model to classify them separately.
This approach enables the model to recognize and
handle adversarial inputs more effectively, enhanc-
ing its robustness. In a classification task, the ML
system aims to learn the function f(x) 7→ y, where
x ∈ X is the input sample and y ∈ Y is the cor-
responding predicted class label. Input x comes
from an unknown distribution for each class, de-
noted as DCi

real. The training objective of the ML
system is to approximate these class-wise dis-
tributions (learned as DCi

train) as accurately as
possible. Adversary attacks the trained ML model
f( , θ), by generating the adversarial sample x

′

as close as possible to the original sample x such
that the predictions for x and x

′
are different, i.e.

f(x
′
, θ) ̸= f(x, θ), where x

′
= x+δ with minimum

δ. The goal of the adversary is to find a sample
from DCi

real that does not follow DCi
train. The sam-

ples generated for class Ci by an adversary will
follows DCi

adv instead such that DCi

adv is consistent

with DCi

real but D
Ci

adv ̸= DCi
train. Statistical tests

that compares two distributions can detect
adversarial examples once a sizable batch
of adversarial inputs is collected. An alter-
native approach is to integrate an extra outlier
class, Cout, into the learning model. This allows
the ML model to classify adversarial examples as
Cout, as they differ from the learned training dis-
tribution, DCi

train. Grosse et al., 2017 conducted
experiments to demonstrate the efficacy of detect-
ing adversarial examples using statistical tests and
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incorporating an adversarial class into ML mod-
els. Statistical tests reliably identify the benign
data with approximately 95% confidence regard-
less of sample size. For most datasets and models,
just 50 adversarial examples suffice for the statis-
tical test to reject the null hypothesis. Individual
tests on class-wise separated inputs prove to be
more effective, requiring a smaller minimum sam-
ple size for confident detection compared to the
general statistical test. To study the efficacy of
ML models trained to detect adversarial samples,
two separate models, one on clean data and one
on adversarial examples infused data are trained.
While the accuracy of the second model on be-
nign data slightly decreases compared to the first
model, it effectively detects adversarial examples.
Moreover, the model demonstrate the ability to
generalize to various attacker strategies, detect-
ing adversarial inputs crafted using different algo-
rithms than those used to generate the adversarial
training samples. [14]

MLClean is a unified framework that deals
with data cleaning, data sanitization, and
unfairness mitigation in ML systems. It can
be used to detect adversarial examples in a
dataset. MLClean exploits the inter-dependencies
of these three processes and integrates them to
produce a clean and unbiased dataset. On empir-
ical evaluation, MLClean shows similar accuracy
compared to existing data cleaning and sanitiza-
tion methods with significantly better run-time.
[41]

Picket is a self-supervised learning based
adversarial sample detection framework de-
signed to protect against data corruptions in both
training and deployment of machine learn-
ing models on tabular data. During training,
it filters out corrupted examples from the training
data, while during deployment, it identifies and
flags erroneous query data points to a pre-trained
ML model. Picket uses PicketNet, a novel deep
learning framework tailored for mixed-type
tabular data, which adeptly handles numerical,
categorical, and short text entries, aiming to un-
derstand the distribution traits of non-corrupted
data. Picket does not need access to clean data
to learn non-corrupted data distribution. In
self-supervised learning, a prevalent approach in-
volves masking a portion of the input and prompt-
ing the model to reconstruct it using the remain-
ing unmasked information. Models utilizing multi-
head self-attention mechanisms acquire represen-
tations for structured inputs, like tuples or text
sequences, by capturing inter-dependencies among
different segments of the inputs. This enables var-
ious segments to display diverse levels of attention

towards each other within the same structured in-
put. Picket trains a self-supervised Picket-
Net model, M , to capture clean data feature
distributions. During training, Picket records re-
construction losses across epochs for all dataset
points, D. After training, it analyzes reconstruc-
tion losses of early epochs to identify corrupted
points, and constructs data set C by removing
them from D. M is then trained on C. Picket-
Net uses a novel two-stream multi-head self-
attention model, which grasps the distribution
of tabular data. Each stream, representing a dis-
tinct perspective of the input data, focuses on
learning specific aspects. The schema stream
identifies schema-level dependencies among data
attributes, while the value stream discerns de-
pendencies among individual data values. Schema
stream represents positional encoding of each
attribute. To generate value stream, each at-
tribute value is encoded separately. Categorical
attributes are encoded using a learnable lookup
table, which is trained alongside other PicketNet
components. Numerical attributes are encoded us-
ing zero-padded raw value. Text attributes are
encoded using word embeddings. During train-
ing, each data point in D undergoes attribute
masking, where one attribute is masked at a time
and reconstructed using the remaining attributes
in the tuple. Reconstruction loss specific to at-
tribute types is used: mean squared error for
numeric attributes and cosine similarity-based
cross-entropy loss for categorical and text at-
tributes. A loss-based filtering mechanism,
which removes samples with high loss to ad-
dress random or systematic corruptions and sam-
ples with unusually low loss to mitigate poisoning
attacks, is used to detect and exclude corrupted
data. After removal of corrupted data, dataset C
is constructed and PicketNet is retrained on it.
During inference, Picket operates in offline and
online phases. Having access to a classifier f ,
data set C and model M , Picket builds a class-
wise victim-sample detector (with the feature
space of original features concatenated with recon-
struction loss) for the given prediction task. A lo-
gistic regression based binary classifier, one
for each class (gy for class y) is trained as victim-
sample detector. For the sample x (with predic-
tion f(x)), victim-sample detector gf(x) is used to
mark x as corrupt or non-corrupt. Victim-sample
detectors are trained using a dataset containing
artificially corrupted data points. Initially, the
trained classifier f is applied to all points in C, re-
sulting in a subset Ccor where f(x) = y, indicating
correct predictions. Ccor is then partitioned into
Cy

cor , one for each class y. Artificial victim sam-
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ples and noisy points are constructed from Cy
cor,

by adding noise to sample x to generate x
′
. If

f(x
′
) = f(x) = y, x

′
is tagged as noisy sample;

otherwise, it’s labeled as a victim sample. The
empirical assessment of Picket involves six real-
world datasets where various types of noise are de-
liberately introduced using customized methods.
For downstream modeling tasks, logistic regres-
sion, SVM, and a fully connected neural network
are used. Across all datasets and noise types (ran-
dom, systematic, and adversarial), Picket consis-
tently outperforms existing methods. [25]

Roth et al., 2019 proposed a method that de-
tects adversarial examples irrespective of their
origin, as long as they introduce recognizable
patterns in the feature representations of
a neural network. Given a multi-class setting
with (x∗, y∗) as the input-output pair, x∗ ∈ RD

and y∗ ∈ {1, 2, ...,K}. Adversarial perturbation
applied on input x∗ generates x = x∗ +∆x, such
that F (x) ̸= y∗ = F (x∗), where F is the learned
classifier. For a probabilistic classifier with a
logit layer for probability scores, the prob-
ability of data point x being classified as class
y is given as fy(x) = ⟨wy, ϕ(x)⟩, with wy being
the class specific weight and ϕ is the learned
feature map. Final prediction is then given as:
F (x) = argmaxy fy(x). Pairwise log-odds be-
tween class y and z given input x is given
as:

fy,z(x) = fz(x)− fy(x) = ⟨wz − wy, ϕ(x)⟩ (24)

A defense strategy against adversarial per-
turbation is to induce noise on input samples.
For a data point x, a noise component η is added
such that Pr{F (x + η) = y∗} is as large as pos-
sible. The noise-perturbed log-odds is used to
calculate pairwise log-odds for class pair (y, z):

gy,z(x, η) := fy,z(x+ η)− fy,z(x) (25)

The system uses a z-score standardized ver-
sion of pairwise log-odds (ḡy,z(x)) as the un-
standardized distribution depends on the class-
pairs. The perturbations ∆x overfits the data,
i.e. x; and the effect of perturbation can be un-
done by adding noise to the sample. For per-
turbed sample x∗ +∆x, the model prediction will
be F (x∗ + ∆x) = y ̸= y∗. The added noise
η partially counteracts the adversarial ma-
nipulation, directing the log-odds and hence
the prediction towards the true class y∗, i.e.
F (x∗+∆x+ η)→ y∗. Figure 5 shows how adding
noise (darker the color, higher the added noise)
to the perturbed adversarial sample (light red)
moves it towards the original data point x∗ (shown

Figure 5: Effect of adding noise to adversarially
perturbed sample on logit score [33]

in blue). The standardized version of pair-
wise log-odds ḡy,z(x) can be used as a measure
of whether x classified as y is a manipulated
example of class z. The data point is flagged
manipulated if

max
z ̸=y
{ḡy,z(x)− τy,z} ≥ 0 (26)

where τy,z is a constant. A new simple classifier G
which can be used to correct the erroneous classi-
fication output is defined as:

G(x) = argmax
z
{ḡy,z(x)− τy,z} (27)

with τy,y = ḡy,z = 0. The selected class z (green
box) for the example shown in Figure 5 is as
per the classification output of G(x). On empir-
ical evaluation, the proposed method showcases
the adversarial examples detection rate of ∼
100% with a false positive rate of ∼ 1%. The
proposed correction method successfully reclas-
sifies almost all detected adversarial sam-
ples to their original class. [33]

5 Entity Matching

Entity matching plays a pivotal role in data clean-
ing by eliminating redundant or duplicate records
within a dataset. The presence of duplicate en-
tries can skew analysis results, compromise data
integrity, and lead to inaccurate insights and de-
cisions.

Data Tamer is a scalable entity matching
system which groups data source, called as
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sites, into classes, where each class has data
source referring to the same real-world entity.
Sites are identified manually by users categorized
as Data Tamer administrator (DTA). Data
Tamer system uses dictionaries, called as author-
itative tables, which have correct informa-
tion for the cleaning purpose. All these configu-
rations can be setup using DTA management
console. The console has options for the DTA
to specify actions such as: ingestion of new
data source, attribute identification, and en-
tity consolidation. The system has the op-
tion to configure one more level of human inter-
ference called as Domain Experts (DE). DEs
can be consulted for assistance at any stage of
data curation. For schema integration, Data
Tamer system has 4 in-built experts (algo-
rithms): fuzzy string comparison between at-
tribute names, TF-IDF cosine similarity be-
tween tokenized data values for attributes,
ratio of intersection and union of data val-
ues for two attributes, and Welch’s t-test
for pair of attributes having numeric values;
each giving a score between 0 and 1 for the pair-
wise comparison of attributes. The final score is
the weighted average of these scores, which serves
as the basis for schema integration. The system
learns the de-duplication rules by presenting
the identified probable duplicate tuple pairs for
human review in decreasing order of similarity
score so that human reviewers can stop label-
ing below a certain similarity threshold. The
labeled set of duplicate and non-duplicate pairs
are denoted as TP and TN . Data Tamer has a
Naive Bayes classifier based learning module that
learns de-duplication rules from TP and TN . The
de-duplication rules cane be: rules based on cut-
off threshold on attribute similarities; rules
based on probability distribution of attribute
similarities for duplicate and non-duplicate
pairs. A typical rule takes the form: the probabil-
ity of the first name and last name having similar
values is almost equal to 1 for duplicate tuples.
The system uses a correlation clustering algo-
rithm to generate consistent results. There can
be a case when for a set of three tuples t1, t2, t3,
(t1, t2) and (t2, t3) are marked as duplicates, but
(t1, t3) as non-duplicate. This inconsistency is re-
solved using a correlation based clustering algo-
rithm to form clusters in a graph where each node
represents a tuple and an edge between two tu-
ples represents duplicates. The algorithm consid-
ers all nodes as singleton clusters and keep on
merging them if the connection strength (quan-
tified as the number of existing edges between two
clusters divided by the total number of possible

edges) is above certain threshold. Data Tamer has
a separate module, named as Data Tamer Ex-
change (DTX), which manages the involvement
of DEs in data curation task at attribute identi-
fication and entity consolidation phases. The
system maintains confidence based ratings for
eachDE across all the available domains and moti-
vates them to give high quality response with man-
aging the workload for them. On empirical evalu-
ation, Data Tamer achieved 90% success rate for
attribute mapping, with a modest training (∼ 50
records). For duplicate identification, Data Tamer
achieved 100% precision with a recall rate of 98.9%
for one of the tasks. To evaluate the usefulness of
DTX, 33 domain experts were contacted to beta-
test the system of which 18 participated. These
experts were asked to rate the system on a scale
of 1 to 3, in which the DTX received the average
score of 2.6. [40]

Corleone is a hands-off crowdsourcing
(HOC) based entity matching (EM) work-
flow that uses crowd in all the EM steps. Give
two relations A and B, entity matching is find-
ing two records a ∈ A and b ∈ B that refers
to the same real-world entity. Any EM work-
flow consists of the following steps: blocking,
matching, accuracy estimation, and reitera-
tion. Blocking identifies probable match candi-
dates based on defined heuristic rules. Matching
uses a learned ML model or rule-based matcher to
predict matches from probable match candidates.
The next step is the estimation of match ac-
curacy. The final step in the EM workflow is
the identification of difficult pairs, revising the
matcher, and then matching again. Corleone
is a HOC system that uses crowd for all the entity
matching steps. It supplies crowd with a short
textual instruction on what it means for two
tuples to match, and four examples (two positive
and two negative). Using the instruction and the
provided examples, crowd performs the entire task
of entity matching on two relations A and B. The
architecture of Corleone is shown in Figure 6. It
consists of: Blocker, Matcher, Accuracy Es-
timator, and Difficult Pairs’ Locator. Blocker

Figure 6: The Corleone Architecture [12]

uses blocking rules to identify probable match can-
didate which are then used by Matcher to train a
random forest model using active learning.
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Accuracy Estimator quantifies matcher’s perfor-
mance. Difficult Pairs’ Locator finds the incor-
rect matches which are then used to re-train the
ML model used in the matcher. Different compo-
nents of Corleone can be used in isolation. Block-
ing is applied only when |A × B| > tB , where tB
is the blocking threshold. Blocker takes a sam-
ple S ⊂ A×B, such that S has sufficient samples
from both the classes (probable matches and non-
matches). It then builds initial random forest F
using given examples (two positive and two nega-
tive), which is then used to find the informative
samples in S to be labelled by crowd and used
to improve F . Finally, blocking rules are ex-
tracted from the random forest classifier natu-
rally by taking the branches that lead to negative
class (non-matches). A total of k blocking rules
are selected for human evaluation based on rule’s
precision and coverage. For each of the selected
rule, a sample of b pairs from the covered
data points by it are labelled as matched
and non-matched (negative with count n ) and
added to a set X (total sample count n). Based
on the labelled examples, the precision of the rule
can be estimated as P = n

n . Rule R is selected
if estimated precision P ≥ Pmin and is within the
pre-defined bound. The selected rules are added in
a set, from which a subset of rules (R) is selected
greedily such that the set of pairs obtained (de-
noted as ZR) by applying the rules to A×B is the
largest and |ZR| ≤ tB . Given C, the selected can-
didates by the blocker, and initial trained random
forest based classifierM , the matcher selects a set
of most informative samples of size q from C
to be labelled by the crowd. Informative samples
are selected based on the entropy. For a sample
e, entropy measures the disagreement of different
classifiers for the classification task, and is given
as:

entropy(e) = −[P+(e) ln(P+(e)) + P−(e) ln(P−(e))] (28)

where P+(e) and P−(e) are the fraction of decision
trees labelling sample e as positive and negative re-
spectively. The higher the entropy, stronger
the disagreement, and the more informative
the sample is. The training stops once the con-
fidence of the pre-selected monitoring set V con-
verges. The confidence of the monitoring set is
defined as:

conf(V ) =

∑
e∈V (1− entropy(e))

|V |
(29)

The training process stops once conf(V ) does not
change significantly over a window of training it-
erations. The empirical results show that Cor-
leone achieves comparable (slightly better) accu-

racy than traditional solutions, requiring no de-
veloper in the loop and at a reasonable crowd
cost. The components of Corleone are modular
and each of them can be used in isolation. [12]

Sarawagi et al., 2002 proposed an ac-
tive learning based entity matching system
(ALIAS) that discovers challenging training
pairs iteratively, producing a two-fold reduc-
tion in the numbers of required labeled training
examples to achieve a desirable level of accuracy.
Given a database D, ALIAS uses a set of nf pre-
defined similarity functions F , where each simi-
larity function takes record pair (r1, r2) as input
and gives a similarity score between them as out-
put. Given a record pair, mapper applies the set
of similarity functions F on it to produce a nf
dimensional feature vector. For the initial
set of labeled training record pairs L × L,
mapper generates a mapped training dataset
Lp, which is used to train the initial learner. The
trained initial learner is then used to select a set S
of cardinality n out of Dp (mapped pair of records
in D × D). Record pairs in S are selected based
on the predicted label for the pairs in Dp on the
basis of the criteria that the selected records
will produce most information gain when
labeled and used for retraining. Human re-
viewers are presented with the set of chosen sam-
ples S along with their predicted labels, allow-
ing them to correct the incorrect predictions if
any. The initial training set is then augmented
with the newly-labeled record pairs and used for
re-training the classifier. The process continues
till a desired level of accuracy is achieved. The
output of the ALIAS system is a deduplication
function I, which when given a list of records
A, finds the duplicates in the set A × A. For a
large dataset D, the number of similarity scores
to be calculated will be of the order O(nf |D|2).
This complexity is reduced by implementing a
grouping strategy that divides the dataset into
smaller groups (based on certain attribute criteria,
such as records with same last name in the same
group) and forming the pairs within the group.
The learning component of ALIAS is selected
based on: accuracy, interpretability, index-
ability, and training efficiency. Sarawagi et
al., 2002 assessed the performance of three clas-
sification methods— Decision tree, naive Bayes,
and SVMs. Among the chosen classifiers, Decision
tree classifiers produced more interpretable classi-
fication rules compared to others. The decision
tree’s predicates, which involve simple conjuncts
and disjuncts on individual similarity functions,
make it more indexable than classifiers like SVMs
and naive Bayes. Active learning leads to faster
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convergence of the used training algorithm. The
concept of active learning can be explained using a
simple example shown in Figure 7. It showcases a
scenario where points on a line need classifying as
positive or negative. With a labeled negative sam-
ple (r) and positive sample (b), points left of r and
right of b are confidently classified. The region be-
tween them, labeled the region of uncertainty,
is where future training points should be selected.
Labeling point m, situated in the middle, halves
the size of this uncertain region when used for
training. ALIAS uses a classifier-independent

Figure 7: Active Leaning [35]

approach to measure uncertainty in prediction,
which encodes disagreement among predic-
tions from a committee of N classifiers. This
committee, comprised of slightly varied yet sim-
ilarly accurate classifiers, offers diverse classifica-
tion perspectives. Certain data instances receive
consistent predictions, while uncertain instances
will get different labels representing the uncer-
tainty. Randomization of model parameters,
partitioning of training data, and attribute
partition can be used to form committees. Em-
pirical evaluation of ALIAS shows that the active
learning based selection of training set reduces the
number of labeled training samples on an average
by 40× compared to random selection, to achieve
the same accuracy level. [35]
Ditto is an entity matching system which

frames EM as a sequence-pair classifica-
tion task and utilizes pre-trained language
models for the purpose. Ditto EM’s pipeline
takes two collections D and D

′
as input and re-

turns M ⊂ D × D
′
as output, where each en-

tity pair (e, e
′
) ∈ M represents the same real-

world entity. Pre-trained language models (LMs)
used by Ditto have simplified architecture tailored
for EM, and capture both basic lexical meanings
and deeper syntactic and semantic nuances. Pre-
training exposes LMs to vast text data, allowing
them to develop rich language semantics. The
pre-trained LM is then fine tuned for EM us-
ing a labeled dataset containing positive (match-
ing) and negative (non-matching) entity pairs.
Fine tuning involves: adding task-specific layers
to the LM(a fully connected layer and soft-
max output for binary classification); initial-
izing the modified network with the pre-trained
LM parameters; training it on the dataset un-
til convergence. Entity pair (e, e

′
), where entity

e = {(attri, vali)}1≤i≤k, is serialized as:

serialize(e, e
′
) ::= [CLS]serialize(e)[SEP ]serialize(e

′
)[SEP ]

serialize(e) ::= [COL]attr1[V AL]val1...[COL]attrk[V AL]valk
(30)

where [COL] and [V AL] are special tokens indi-
cating start of attributes and values respectively,
and [SEP ] is a special token separating the two
entities. Ditto’s serialization method doesn’t
demand uniform schema adherence or attribute
matching before executing the matcher. The
system can incorporate domain knowledge
through the pre-processing of input sequences.
Ditto uses a recognizer to identify span of a
text v, which can be tagged as a specific type,
aiding in entity matching process. For exam-
ple, tagging spans as product IDs or street num-
bers can guide the system to make more accu-
rate matches and avoid pairing unrelated entities.
Given the input text v, recognizer gives the
start and end of a span with its span type
in the text: recognizer(v) = {(si, ti, typei)}i≥1.
Once the span is identified, the original text can
be augmented with tokens representing span and
aligned accordingly. For example, a phone num-
ber “(866) 123-4567” may be replaced with “(866)
123- [LAST]4567[/LAST]”, indicating the last 4
digits of a phone number. To overcome the limit of
sequence length, Ditto uses TF-IDF based sum-
marizing technique to just retain the non-stop
words. Ditto does training data augmentation us-
ing an augmentation operator o on a serialized
pair s, such that o(s) = s

′
have the same label l

(matching or non-matching) as s. The used opera-
tors are adding or deleting spans, attributes,
and swapping the order of entities in the en-
tity pair. Empirical evaluation of Ditto shows that
it excels with noisy data and small training sets,
achieving state-of-the-art results with just half the
labeled data. Pre-trained LMs contribute signif-
icantly to its performance, emphasizing language
understanding as its strength. Ditto’s optimiza-
tion techniques are also impactful, maintaining
competitive training and prediction times despite
using comparatively deeper models. [23]

Fusion is a novel entity matching system that
employs ordinal regression to model pairwise
similarity between records. It assigns dis-
crete ordinal match levels to record pairs. This
approach allows to generate multiple clus-
ters at different match levels while incur-
ring the full cost of entity matching only
once. Fusion handles the “bad-triplet” prob-
lem (where a graph between three records in-
cludes two positive edges (indicating similarity)
and one negative edge (indicating dissimilarity))
by handling the possible reasons - conflicting in-
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formation and systematically missing data,
separately. It treats the scenario of conflict-
ing information as disagreeable-triplet and
systematically missing data as agreeable-
triplet). Fusion follows a standard workflow
similar to other entity matching systems, com-
prising pre-processing, blocking, pairwise
comparison/classification, computing con-
nected components, and clustering. In pre-
processing, all records are normalized and invalid
values are removed. Blocking groups records us-
ing multiple blocking indices to reduce the match-
ing space. Pairwise comparison employs an or-
dinal regression model to assign discrete ordered
labels to candidate pairs, indicating match like-
lihood. Clustering groups record pairs into con-
nected components, then separates them into fi-
nal clusters using hierarchical clustering. The re-
sulting hierarchy of disjoint clusters is associated
with ordinal match thresholds, allowing flexibility
in cluster creation based on business needs. Fu-
sion finally assigns a persistent entity iden-
tifier to each entity. This identifier remains in
the system as long as the entity exists, even if the
cluster composition changes. When all associated
records are deleted, the identifier is removed, and
a new one is created for new entities. Given a
record pair encoded as feature vector x(i) and the
corresponding target match level y(i), the goal of
the ordinal regression is to predict a match level
z(x) = wTx, by learning the weight w and ordi-
nal threshold levels θ1, θ2, ..., θT , such that the
loss(z(x), y) is minimized. The predicted match
level is k if θk < z(x) < θk+1. In ordinal regres-
sion, there is a specific order to the labels and
hence the goal is to minimize the number of
crossed thresholds. The loss (cost) of a single
sample is given by aggregating the loss across all
the ordinal levels as:

C(x, y) =

T∑
l=1

loss

(
s(l, y)(θl − z(x))

)
(31)

where

s(i, j) =


−1, if i < j

0, if i = j

1, if i > j

(32)

Fusion uses logistic loss. The augmented loss
function with L2 regularization is

J(w, θ) = 1
2

∑N
i=1

∑T
l=1 loss

(
s(l(i), y(i))(θl − wTx(i))

)
+ λ

2 ||w||
2

(33)
Fusion has 5 ordinal levels for match:
hard-conflict, non-conflict, weak-match,
moderate-match and strong-match. The

cost function can be extended to include cost-
sensitive prediction error by introducing
weights for each miss-classification:

C(x, y) =

T∑
l=1

loss

(
γl,ys(l, y)(θl − z(x))

)
(34)

For example, by assigning higher weight to
γweak-match,strong-match, the precision of strong-
match can be increased. A cluster C is defined as a
set of records r1, r2, ..., rn; where each record ri has
a total of M attributes denoted as (a1, a2, ..., aM ),
with the jth attribute of ri being ri[aj ]. Attribute
j at cluster level is then defined as:

Aj = ∪ri[aj ], ∀ri ∈ C (35)

The similarity between two values for attribute j is
calculated using function j as Sj(a, a

′
). For cluster

level attribute Aj , weakest similarity between
any two values in Aj is defined as:

Smin(Aj) = min
ap,aq∈Aj

Sj(ap, aq) (36)

Weakest similarity Smin(Aj) can be used to iden-
tify and resolve hard-conflict. If for any cluster
attribute Aj , Smin(Aj) < tj where tj is a thresh-
old, it can be said that for attribute j in cluster
C, there are some values which are dissimilar. Fu-
sion uses a variant of hierarchical clustering-
based algorithm to partition connected com-
ponents to clusters. Given cluster C and C

′

having cluster level attributes A and A
′
, where

A = (A1, A2, ..., AM ), Aj is a cluster level at-
tribute; the hard-conflict criteria of Smin(Aj) < tj
can be defined using ordinal regressor output as
M(r, r

′
) < θ, where θ is the ordinal threshold

(i.e. do not merge cluster if there exists any
record pair which violates the merge thresh-
old condition). Each merge operation evaluates
the measure M(A,A

′
) associated with the clus-

ter pair C and C
′
. If it falls below the classifier

threshold for all cluster pairs, the algorithm stops.
This ensures that no hard conflict exists in the
final clusters, preserving connections between
records as far as the classifier permits. Fusion re-
tains same identifier for similar cluster by finding
the number of overlapping records between two
clusters and doing the optimal cluster mapping
by cluster assignment which maximizes the to-
tal number of intersecting records between
two clustering outcomes. Fusion uses a greedy al-
gorithm to find an efficient sub-optimal solution
for optimal cluster mapping. Empirical evalua-
tion of Fusion demonstrates that ordinal regres-
sion outperforms logistic regression in predicting
fixed ordinal match levels, with a 50% reduction
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in error when trained on identical feature repre-
sentations. [44]

Kasai et al., 2019 proposed a low-resource
deep entity matching system that uses trans-
fer and active learning at its core. The system
uses existing learned entity resolution model on
pre-labelled data and then employs active learn-
ing on the target dataset to select informative ex-
amples, subsequently refining the model through
fine-tuning. If a high-resource dataset is un-
available, transfer learning can be skipped, and
active learning can be used directly, and vice
versa. Active learning targets high-confidence
and uncertain examples, enhancing the precision
and recall of the transferred model for the tar-
get dataset. The proposed system uses attribute
and record level tf-idf and jaccard similarity
based blocking algorithm to reduce the num-
ber of record pairs for matching. Matching phase
has a sequence of steps that computes at-
tribute representations, attribute similar-
ity, and finally the record similarity, which
is then used by a binary classifier to classify the
record pair as {match, non-match}. Each entity
record pair is tokenized using existing word em-
bedding techniques. A bidirectional RNN pro-
cesses the tokenized representation of words, and
generates attribute vectors. These attribute
representations are then compared across record
pairs by computing the element-wise absolute
difference to construct attribute similarity vec-
tors (sim1 and sim2). These vectors are added
to find the overall similarity between the entity
record pair. This approach ensures a final similar-
ity vector of consistent dimensionality, regardless
of the number of attributes. A multi-layer per-
ceptron (MLP) is fed with the similarity vector,
whose output is normalized using a softmax
function to get final probability distribution. The
network is trained to minimize the negative
log-likelihood loss. The system uses adversarial
transfer learning to make the network invariant
to idiosyncratic properties of datasets. To make
the network dataset agnostic, a dataset classifier,
having identical architecture as the matching clas-
sifier, is utilized to forecast the dataset origin of
the input pair. The training objective shifts to
the combined negative log-likelihood losses
from both classifiers. By integrating a gradi-
ent reversal layer between the similarity vector
and the dataset classifier, the parameters within
the dataset classifier are trained to discern the
dataset, while concurrently training the rest of
the network to deceive it. An iterative active
learning algorithm is used to further fine-tune
the network for the dataset of interest. The al-

gorithm identifies high-confidence and uncertain
record pairs from unlabeled data in each iteration
and uses it for further training. Given a unla-
beled dataset DU = {xi}Ni=1, with p(xi) being the
probability that the record pair xi is match, the
entropy H(xi) (defined in Equation 37) is used to
flag high-confidence and uncertain record pairs.

H(xi) = −p(xi) log p(xi)− (1− p(xi)) log(1− p(xi)) (37)

High-confidence record pairs will have p(xi) ≈
1, and hence low entropy. Uncertain record
pairs will have p(xi) ≈ 0.5, and hence high en-
tropy. The naive approach for the selection of
the training examples for the next iteration would
be to select bottom K record pairs with low en-
tropy as high-confidence record pairs and top K
record pairs with high entropy as uncertain record
pairs. This approach may unintentionally favor a
specific direction in selecting samples, leading to
inconsistent performance. Instead, the algorithm
partitions DU into two subsets: DU

M (having sam-
ples the model predicted as match) and DU

N (hav-
ing samples the model predicted as non-match);
and picks top/bottom K

2 samples based on entropy
from each subset. The selected uncertain examples
will now have balanced likely false positives
and likely false negatives. Selected uncertain
record pairs are hand-labeled while the predicted
labels for high-confidence examples are used for
training. Experimental assessment of the system
demonstrates that initializing network parameters
via transfer learning and employing active learning
with a sample selection size of K = 20 results in
superior performance, particularly in low-resource
environments, even when tagged data availability
is limited (less than 6% of training data for all
datasets). [18]

Magellan is an entity matching system,
which offers step-by-step guides for various
EM scenarios and provides comprehensive
tools to cover the entire EM pipeline by
leveraging Python’s data analysis and Big Data
stacks for efficient and easy implementation. Mag-
ellan separates the resolution of EM scenarios into
two phases: development and production. In
the development phase, users craft an effective EM
workflow, guided step by step for accuracy. In the
production phase, the focus shifts to implemen-
tation and scaling of the workflow across the en-
tire dataset. Development stage tools leverage an
open-source data analysis stack, maximizing avail-
able resources, while production stage tools are
built on top of a Big Data stack, prioritize scal-
ability. Magellan automates each step wherever
feasible and provide detailed guidance when au-
tomation is not possible. For blocking, Magellan
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suggest users to try increasingly complex block-
ers and cease when the remaining tuple pairs are
sufficiently reduced in number. It automatically
suggests blocking rules and offers users with
the option to debug blockers by verifying
their output. Once the blocking output (set of
tuple pairs) C is available, Magellan suggests a
method to select a sample S ⊂ C for labeling as
match or non-match to train the matcher. Mag-
ellan suggests an iterative approach for sam-
pling and labeling. If the user requires a sample
S of size n, they select and label a random sample
of size k (denoted as S1) initially. If S1 contains
sufficient matches, the user can infer that the den-
sity of matches in C is high, and proceed to ran-
domly sample rest of the pairs from C. However,
if the density of matches in S1 is low, the user
must reconsider the blocking step, potentially
by devising new blocking rules to eliminate more
non-matching tuple pairs in C. Users then take
the selected labelled data S and create a set of
features, which are to be used to train the avail-
able set of learning based matchers. The data
is divided into development and evaluation set and
matchers accuracy are evaluated on evaluation set.
If a matcher achieves slightly lower accuracy but
generates results that are easier to explain, Mag-
ellan also highlights that matcher for the user’s
consideration. Magellan has the provision to de-
bug certain class of matchers. Its debugger high-
lights problem with the data, labels, features etc.
based on received false positive and false negative
results. Users can also add rule-based matchers
to further improve accuracy. [19]

Singh et al., 2017 proposed rule-based
entity matching system grounded on Gen-
eral Boolean Formulas GBFs, which offers
enhanced interpretability, achieves comparable
performance to probabilistic approaches, gener-
ates succinct and understandable rules, and can
learn from restricted training instances. GBFs
use attribute matching combined by con-
junctions, disjunctions, and negations for
rule definition. Given two relations R and S
having aligned attributes {A1, A2, ..., An} and
{A′

1, A
′

2, ..., A
′

n}, with records r ∈ R and
s ∈ S, record-level matching is measured by a
boolean predicate f(r[Ai], s[Ai]

′
) ≥ θ (true

means match), where f is a similarity function.
These attribute matching rules are called atoms.
Boolean matching rules are the atoms com-
bined by conjunctions, disjunctions, and nega-
tions. For a given attribute, the proposed system
automatically identifies the similarity function and
threshold to be used, and under what logic they
should be combined. The optimization met-

ric that is used to identify the parameters can
be selected from a range of options including F-
measure, precision, recall, and accuracy. Alterna-
tively, users have the flexibility to define their own
metric using native Python code within the tool.
The system features a user-friendly interface
designed to facilitate various tasks within
the entity matching pipeline, including dataset
manipulation, schema matching, customiza-
tion of entity matching rules, and monitor-
ing the progress of ongoing experiments.
The empirical evaluation of the proposed system
demonstrates a comparable F-measure com-
pared to other existing methods across chosen
datasets. [39]

6 Conclusion

The importance of data cleaning is paramount in
ensuring the quality and reliability of datasets for
machine learning systems. Through an in-depth
exploration of existing data cleaning techniques,
particularly focusing on integrity constraint vio-
lation, outliers, missing values, anomalies, adver-
sarial examples, and entity matching, it becomes
evident that no single data cleaning approach
is universally applicable across all clean-
ing tasks. Instead, the selection of an appropri-
ate data cleaning technique must be backed by
a nuanced understanding of various factors, in-
cluding the nature of errors, dataset char-
acteristics, employed error detection and
repair techniques, chosen machine learn-
ing models, and specific cleaning scenarios.
Experimental studies play a crucial role in guid-
ing this decision-making process, allowing prac-
titioners to assess the effectiveness and suitabil-
ity of different cleaning methods for the selected
use-case. CleanML is an initiative to design a
framework for a systematic study on the im-
pact of data errors and cleaning methods on
downstream ML models. It establishes a thor-
ough and structured approach for assessing
the combined task of data cleaning and ML
modeling. Such methods are essential because
evaluating individual ML algorithms alone is in-
adequate for determining the effectiveness of data
cleaning on ML outcomes. Some ML algorithms
may inherently handle noise better, potentially
reducing the need for extensive data cleaning.
This approach addresses the challenge of iden-
tifying statistically significant results amidst di-
verse datasets, cleaning techniques, and ML mod-
els. Several factors can impact the process of data
cleaning for a ML system. These factors are: the
dataset to be cleaned, error type in the dataset,
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cleaning method (detection and repair al-
gorithms) to be used, used ML algorithm, and
the stage (cleaning of training or test dataset) in
the pipeline where cleaning process is integrated.
CleanML represents these attributes affecting a
ML system with respect to data cleaning process
in the form of a relational schema. Each tuple
in the schema represents a unique hypoth-
esis to be tested. CleanML relational schema
is shown in Figure 8. Dataset represents the in-

Figure 8: CleanML Relational Schema [22]

put data to the ML system. Error type attribute
represents the type of error to be tested. De-
tection and Repair represents the data cleaning
methods to be tested for error detection and er-
ror repair. ML Model represents the ML algo-
rithm used in the experiment. Scenario represents
whether the data cleaning is applied on training
or test data. Flag represents the result of the ex-
periment (“P (positive)”, “N (negative)”, and “S
(insignificant)”). Schema R1 represents: “how
does cleaning some type of error using a de-
tection method and a repair method affect
a ML model for a given dataset?”. Schema
R2 represents: “how does cleaning some type
of error using a detection method and a re-
pair method affect the best ML model for a
given dataset?”. Schema R3 represents: “how
does the best cleaning method affect the
predictive performance of the best model
for a given dataset?”. Resultant relation R af-
ter conducting a set of experiments can be queried
to reach to a conclusion. For example, if for the er-
ror type “outliers”, Flag P dominates, this means
that cleaning outliers improves the performance
of ML system. If for the error type “outliers”
and ML Model “decision tree”, Flag S dominates,
this means that cleaning outliers does not improve
the performance of ML system when decision tree
is the used ML Model. With respect to scenario
there can be a total of 4 encoding: A: Model
trained and tested on dirty training and
test set; B: Model trained on dirty training
set and tested on clean test set; C: Model
trained on clean training set and tested on
dirty test set; and D: Model trained and
tested on clean training and test set. Out
of a total of 6 possible combinations of these 4
scenarios, only two: BD (shows the effect of clean-

ing the training set on the performance of ML
system on the clean test set) and CD (how the
evaluation of ML model on clean vs dirty test
set affects the overall performance of ML system)
makes sense. CleanML compares these two combi-
nations in each of the conducted experiment. An
example experiment is shown in Figure 9. The

Figure 9: CleanML: Sample Experiment with Re-
sult [22]

goal of experiment s2 is to study: how does the
cleaning of “training dataset” for “outliers”
through “IQR” detection and “Mean Impu-
tation” affect the accuracy of the ML sys-
tem on “EEG dataset”, irrespective of the
ML Model used?. The experiment fits in the
R2 semantics. The reported results in Figure 9
will have randomness due to hyper-parameter
tuning and train-test split . To handle the ran-
domness due to hyper-parameter tuning, for
each of the ML Model five experiments with dif-
ferent random seed for hyper-parameter search is
conducted. Out of the conducted 5 experiments,
the one with the best result is selected. The results
and selection procedure for XGBoost for scenario
training on dirty training set and for KNN for
scenario training on clean training set is shown in
the third table of Figure 9. To handle the random-
ness due to train-test split, each experiment is
repeated for a set of 20 train-test splits and the re-
sults are used to test the statistical significance
of the test. paired sample t-test (two-tailed t-
test, upper-tailed t-test, and lower-tailed t-test) is
used to generate the final result (value of the at-
tribute Flag) of the experiment. The idea behind
running three paired tests is the fact that the value
of one-tailed t-test is used for reporting only if the
two-tailed t-test is significant. The case when two-
tailed t-test is insignificant is considered as flag
“S”. Using proposed bench-marking by the appli-
cation of CleanML, it is found that data clean-
ing may not necessarily improve the per-
formance of downstream ML Models. The
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analysis of results indicates that applying cleaning
methods without careful consideration could detri-
mentally affect model performance. The impact of
cleaning duplicates is ambiguous. Cleaning out-
liers results in either no change or slight improve-
ment in the performance of ML systems, though
the effectiveness largely depends on the methods
used for detection and repair. Imputation of miss-
ing values, if distant from ground truth, may in-
troduce bias in the dataset and diminish the per-
formance of the ML system. [22]

There are multiple methods available for ad-
dressing different types of data errors. The com-
plexity and user-friendliness of these data clean-
ing systems differ, making them important factors
to evaluate when choosing the suitable system for
a specific use-case. The effectiveness of the se-
lected technique further depends on the specific
characteristics of the dataset in question, the cho-
sen error detection and repair techniques, the type
of machine learning (ML) model to be employed,
and whether the cleaning process pertains to the
training or test data. It’s evident that no one-
size-fits-all approach exists when it comes to data
cleaning, as the optimal choice of cleaning tool
depends on a careful consideration of these di-
verse factors. Hence, researchers and practitioners
must conduct thorough assessments and ex-
perimental studies to determine the most suit-
able cleaning technique for their specific scenario,
enhancing the reliability and performance of the
overall ML system.
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Rekatsinas. A formal framework for proba-
bilistic unclean databases. In Pablo Barceló
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Jorge-Arnulfo Quiané-Ruiz, Armando Solar-
Lezama, and Nan Tang. Generating con-
cise entity matching rules. In Proceedings
of the 2017 ACM International Conference
on Management of Data, SIGMOD ’17, page
1635–1638, New York, NY, USA, 2017. Asso-
ciation for Computing Machinery.

[40] Michael Stonebraker, Daniel Bruckner,
Ihab F. Ilyas, George Beskales, Mitch
Cherniack, Stanley B. Zdonik, Alexander
Pagan, and Shan Xu. Data curation at scale:
The data tamer system. In Sixth Biennial
Conference on Innovative Data Systems
Research, CIDR 2013, Asilomar, CA, USA,
January 6-9, 2013, Online Proceedings.
www.cidrdb.org, 2013.

[41] Ki Hyun Tae, Yuji Roh, Young Hun Oh,
Hyunsu Kim, and Steven Euijong Whang.
Data cleaning for accurate, fair, and robust
models: A big data - ai integration approach.
In Proceedings of the 3rd International Work-
shop on Data Management for End-to-End
Machine Learning, DEEM’19, New York,
NY, USA, 2019. Association for Computing
Machinery.

[42] Maksims Volkovs, Fei Chiang, Jaroslaw
Szlichta, and Renée J. Miller. Continuous
data cleaning. In Isabel F. Cruz, Elena
Ferrari, Yufei Tao, Elisa Bertino, and Goce
Trajcevski, editors, IEEE 30th International
Conference on Data Engineering, Chicago,
ICDE 2014, IL, USA, March 31 - April 4,
2014, pages 244–255. IEEE Computer Soci-
ety, 2014.

[43] Richard Wu, Aoqian Zhang, Ihab Ilyas,
and Theodoros Rekatsinas. Attention-based
learning for missing data imputation in holo-
clean. In Conference on Machine Learning
and Systems (MLSys), 2020.

[44] Yan Yan, Stephen Meyles, Aria Haghighi,
and Dan Suciu. Entity matching in the wild:
A consistent and versatile framework to unify
data in industrial applications. In Proceed-
ings of the 2020 ACM SIGMOD International
Conference on Management of Data, SIG-
MOD ’20, page 2287–2301, New York, NY,
USA, 2020. Association for Computing Ma-
chinery.

30


	Introduction
	Preliminaries
	Data Errors
	Formal Definition of Data Cleaning
	Importance of Data Cleaning
	Considerations in Data Cleaning
	Components of a Data Cleaning System

	Integrity Constraint Violation
	Missing Values, Outliers, Anomalies and Adversarial Examples
	Missing Values:
	Outliers and Anomalies:
	Adversarial Examples:

	Entity Matching
	Conclusion

